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Abstract

This paper investigates the problem of parameter identification for quantized Wiener systems subject to replay attacks. Such
attacks cause input-output timing misalignment, and the coupling between quantized measurements and system nonlinearities
further complicates the design of identification algorithms. We propose a data-flag fusion mechanism based on binary stochastic
flag that compensates for identification errors induced by timing misalignment by leveraging the statistical properties of the
flag. Moreover, by exploiting the structural characteristics of the system and the statistical properties of the noise, the quantized
observations and system nonlinearity are jointly formulated as a unified nonlinear equation set, whose solution enables the
joint estimation of the attack strategy and system parameters. Theoretical analysis is conducted to establish the consistency
and asymptotic normality of the estimators, and the optimal configuration of the flag parameter is formulated under the
minimum variance criterion. The generation of stochastic flag that satisfies the required statistical properties is investigated,
the proposed framework is extended to multi-threshold observations, and a robust adjustment scheme is introduced to handle
extreme attack scenarios. All theorems and conclusions are validated through numerical simulations.

Key words: Wiener systems identification; Quantized input and observation; Data-flag fusion mechanism; Replay attacks;
Cyber-physical systems.

1 Introduction

As a core enabling technology of the new wave of
industrial transformation, Cyber-Physical Systems
(CPSs) integrate information technology with the phys-
ical world through computation, communication, and
control, forming an intelligent closed-loop system char-
acterized by real-time perception, dynamic decision-
making, and precise control (Pivoto et al., 2021).
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ference. Corresponding author: Jin Guo.

Email addresses: zmaster1001@163.com (Qingxiang
Zhang), guojin@ustb.edu.cn (Jin Guo),
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Driven by the global demand for digital transformation,
CPSs are increasingly applied across both industrial
and civilian domains, including smart manufacturing
(Mustapha, 2025), smart cities (Rakha, 2024), and wise
medical (Qu et al., 2024).

Motivation. Due to their strong reliance on com-
munication networks, CPSs face unprecedented security
risks when exposed to network unreliability and exter-
nal attacks (Li and Ye, 2025). Among others, replay
attacks, characterized by high stealth, low implemen-
tation cost, and significant disruptive potential, have
been widely recognized in both academic research and
real-world cases as a serious threat to the secure oper-
ation of CPSs (Liu et al., 2023; Mo and Sinopoli, 2009;
Porter et al., 2021). In CPSs security research, accu-
rate modeling and identification of system dynamics are
fundamental for attack detection, anomaly diagnosis,
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and performance recovery. Nonlinear Wiener systems
are commonly adopted due to their strong modeling ca-
pacity and practical interpretability. However, most ex-
isting identification methods are developed under ideal
communication assumptions and fail to account for the
impact of communication insecurity. Moreover, due to
the limited bandwidth and computational resources in
CPSs, signal quantization is unavoidable in practice.
Quantization reduces data precision and introduces ran-
domness, which further complicates the identification
problem (Guo et al., 2017; Guo et al., 2012). Replay at-
tacks amplify this challenge by repeatedly injecting out-
dated data to mislead the decision makers, significantly
increasing the risk of identification failure under quan-
tized conditions. Therefore, investigating the identifica-
tion of quantized Wiener systems under replay attacks
poses not only theoretical challenges but also holds sub-
stantial engineering relevance. Motivated by these chal-
lenges, this paper investigates the identification prob-
lem of quantized Wiener systems under replay attacks.
The proposed approach aims to enhance the security
and controllability of CPSs under non-ideal communi-
cation conditions by providing both theoretical insight
and practical solutions.

Related work. As a representative block-structured
nonlinear system, Wiener systems have long been a
key focus in system identification. When the structures
are known, various parameter estimation methods have
been developed, including least squares approaches
(Nadi and Arefi, 2023), recursive algorithms (Naseri et
al., 2022; Ozb̌ot et al., 2023), and mixed time-frequency
techniques (Shakib et al., 2022). For the unknown non-
linear part, modeling techniques such as Volterra series,
kernel-based methods, orthogonal basis functions, and
Gaussian process hyperparameters have been employed
to enhance model expressiveness and identification ac-
curacy (Bai, 2008; Kang et al., 2014; Nejib et al., 2016;
Risuleo et al., 2019). With the advancement of artificial
intelligence, nonlinear dynamic models based on neural
network, such as the recurrent equilibrium network,
subspace encoders, and deep neural networks, have
been applied to Wiener system identification (Beintema
et al., 2023; Pillonetto et al., 2025; Revay et al., 2024).
However, most existing studies assume that output sig-
nals can be precisely obtained, overlooking the impact
of communication constraints and network security.

Current research on quantized nonlinear system iden-
tification remains primarily theoretical. Zong et al.
(2023) proposed a hybrid particle swarm gradient algo-
rithm based on an auxiliary model for parameter estima-
tion in dual-rate Hammerstein systems. Li et al. (2023)
designed a parameter estimator for quantized Hammer-
stein systems using a constant filter and augmented
parameter error data. Guo et al. (2017) employed the
empirical measure method under persistency of exci-
tation conditions to estimate parameters in quantized
Wiener systems. Additionally, Cao et al. (2024) and

Li et al. (2025) developed adaptive error self-learning
estimator, respectively, for identifing quantized Wiener-
Hammerstein systems. The practical applicability and
robustness in complex scenarios are not considered.

In recent years, research on replay attacks has primar-
ily focused on detection and defense mechanisms. The
first category involves the use of additional information,
such as timestamps (Farha et al., 2022; Jia et al., 2025;
Liu et al., 2024) and random numbers (Huang et al.,
2020), which aim to reveal the essence of replay attacks
by exploiting temporal or numerical discrepancies. How-
ever, these methods typically require significant com-
munication bandwidth. The second category introduces
watermarking into control signals. This widely adopted
defense mechanism can mitigate the impact of replay
attacks but often degrades system performance (Fang
et al., 2020; Fritz and Zhang, 2023; Liu et al., 2023,?;
Mo and Sinopoli, 2009; Porter et al., 2021; Zhu and
Mart́ınez, 2014). The third category focuses on com-
munication data design, aiming to enhance attack de-
tection accuracy without compromising system perfor-
mance. This includes encoding strategies (Song and Ye,
2023; Ye et al., 2019), data reconstruction (Ferrari and
Teixeira, 2021; Li et al., 2023), or sending preset data
(Guo et al., 2025), with unified attack inference at the
receiver side. Other approaches include leveraging cryp-
tographic techniques (Rasheed et al., 2024; Yu et al.,
2025), and using delay-based communication strategies
(Zhao et al., 2025). In contrast, research on system iden-
tification under network attacks remains relatively lim-
ited. As system identification forms the foundation for
state estimation and controller design, it is imperative
to further investigate the security of system identifica-
tion under replay attacks.

Comparedwith denial-of-service attacks and false data
injection attacks, replay attacks are not well investi-
gated in terms of both estimation and control. In-depth
research on replay attacks during system identification
remains notably insufficient. Existing methods (Guo et
al., 2025), which follow the anomaly detection designed
for data tampering, fail to effectively address the core
challenge of the temporal misalignment and often suffer
from slow convergence. Furthermore, the replay attack
strategy model, a high-dimensional probabilistic distri-
bution vector, becomes extremely complex when coupled
with system nonlinearities and quantization effects, cre-
ating an urgent need for a dedicated theoretical and al-
gorithmic framework. An in-depth exploration precisely
targeting the aforementioned gap and challenges is con-
ducted in this paper.

Contributions. This paper focuses on the problem of
parameter identification for quantized Wiener systems
under replay attacks. To address the challenges arising
from time misalignment caused by such attacks, as well
as the coupling between quantized observations and sys-
tem nonlinearities, a data-flag fusion transmission mech-
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anism based on binary stochastic flag is proposed. By
exploiting the statistical properties of the flag, the mech-
anism compensates for the estimation errors induced by
time misalignment. Furthermore, by incorporating the
structural characteristics of the system and the distribu-
tion of the noise, the quantized observations and system
nonlinearities are formulated into a nonlinear equation
set, whose solution enables the joint estimation of sys-
tem parameters and the attack strategy. Moreover, the
strong consistency and asymptotic normality of the esti-
mators are theoretically analyzed, and an optimization
problem for the design of flag parameters is formulated.
A flag generation is developed to ensure the required sta-
tistical properties, and the proposed mechanism is ex-
tended to multi-threshold observation scenarios to en-
hance the adaptability. In addition, a robust counter-
measure is designed to improve the algorithm’s stability
under extreme attack scenarios.

An algorithm framework based on system struc-
ture and intermediate variable estimation has been
constructed to address the complex nonlinear cou-
pling challenges arising from the transition from peri-
odic input-linear systems to quantized input-nonlinear
Wiener systems. The conditions for system identifiabil-
ity under input excitation and parameter solvability are
presented. Convergence of the algorithm against replay
attacks is maintained. The proposed fusion mechanism
ensures that all transmitted data simultaneously car-
ries both system information and security information,
thereby fully preserving the original input excitation
characteristics of the design. The main innovations and
contributions of this paper are summarized as follows.

• This paper addresses the problem of parameter iden-
tification for quantized nonlinear Wiener systems un-
der replay attacks. In contrast to existing studies that
focus on i) identification without attacks (Cao et al.,
2024; Guo et al., 2017; Li et al., 2023, 2025; Zong et al.,
2023), ii) non-quantized information studies (Fang et
al., 2020; Fritz and Zhang, 2023; Liu et al., 2023; Zhu
and Mart́ınez, 2014), and iii) linear system identifica-
tion (Guo et al., 2025), this work provides a systematic
investigation into the identification of nonlinear sys-
tems under the combined effects of quantization and
replay attacks.

• Compared with preset data schemes (Guo et al., 2025)
and conventional timestamp and random number-
based methods (Farha et al., 2022; Huang et al.,
2020; Liu et al., 2024), this paper proposes a data-
flag fusion mechanism based on binary stochastic flag
with real-time and stochastic characteristics. This
effectively overcomes the predictability and commu-
nication overhead issues of existing methods, and
preserves both identification accuracy and the ad-
vantage of binary communication, while ensuring the
robustness against replay attacks.

• The proposed mechanism and identification algorithm
enable joint consistent estimation of both attack prob-

abilities and system parameters. Theoretical proper-
ties of the estimators are analyzed, and an optimal
configuration for the flag parameters is developed. A
flag generation satisfying the required statistical prop-
erties is constructed, the mechanism is extended to
multi-threshold quantization scenarios, and a robust
adjustment scheme is proposed to handle extreme at-
tack conditions.

Organization. The remainder of this paper is orga-
nized as follows. Section 2 introduces the identification
framework for quantized Wiener systems under replay
attacks. Section 3 analyzes the performance of the orig-
inal and improved identification algorithm under replay
attacks. Section 4 develops the defense mechanism and
algorithm and analyzes their performance. Section 5 dis-
cusses several relevant technical issues. Section 6 pro-
vides numerical simulation results. Section 7 concludes
this paper and outlines future research directions.

2 Problem formulation

In this work, we consider a Single-Input Single-Output
(SISO) discrete-time Wiener system, where the linear
dynamic component is a FIR system of order n1, and
the static nonlinear component consists of n2 nonlinear
basis functions. The system is described as follows.{
yk =

∑n2

i=0 ηifi(xk) + wk,

xk = θ1uk + θ2uk−1 + · · ·+ θn1
uk−n1+1,

(1)

where η0, f0(·) ≡ 1, eliminating scale ambiguity caused
by all free parameters ensures that the mapping from
input-output data to system parameter combinations is
unique; wk denotes the system noise satisfying Assump-
tion 2.1 below; uk is the quantized input; xk serves as an
intermediate variable; yk is the system output. The pa-
rameters to be identified are defined as θ = [θ1, . . . , θn1 ]

T

and η = [η1, . . . , ηn2 ]
T for the linear and nonlinear com-

ponent, respectively. The superscript T indicates vec-
tor or matrix transposition. The binary-valued measure-
ment output s0k is generated through the indicator func-
tion.

s0k = I{yk≤C} =

{
1, yk ≤ C;

0, others,
(2)

where C denotes the threshold of the binary sensor. As
illustrated in Fig. 1, s0k is transmitted over an unsecured
communication network to a remote data center, where
the received data at time k is denoted as sk.

Assumption 2.1 The noise {wk} is composed of inde-
pendent and identically distributed (i.i.d.) Gaussian ran-
dom variables with zero mean and variance σ2. Its cu-
mulative distribution function is denoted by Φ(·).
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Fig. 1. System architecture diagram

Remark 2.1 The noise can be relaxed to a ϕ-mixing
process. For the unknown variance, it can be estimated by
treating it as an unknown parameter (Wang et al., 2010).

Building upon the fundamental replay attack model
sk = s0k−δ (Li et al., 2023;Mo and Sinopoli, 2009; Zhao et
al., 2025), the replay delay or intensity δ is often bounded
by a realistic upper limit. Given the established data as-
sociation between sender and receiver in the communi-
cation network, the relationship between sk and s0k at
time k is formulated as follows.

sk = s0k−δk
, (3)

Pr
{
sk = s0k−δk

}
= λδk , (4)

δk ∈ U = {0, 1, . . . , µ}, (5)

where δk is a discrete integer-valued random variable
representing the replay intensity at time k. δk ̸= 0 im-
plies that a replay attack has been launched. µ defines
the upper bound on δk. Denote Λ = [λ0, λ1, . . . , λµ]

T

as the probability vector of δk, satisfying 1Λ =
[1, 1, . . . , 1]Λ = 1. The above random replay attack
strategy can thus be compactly characterized by the
tuple (µ,Λ), determined by its intensity bound and
probability vector.

To counter replay attacks, defenders must design ef-
fective countermeasures and develop consistent identi-
fication algorithms based on the available information,
including uk, the threshold, the noise distribution, and
the received data sk. The consistent goal is to ensure
that, as the sample size tends to infinity, the estimates
of the system parameters η and θ strongly converge to
their true values. In what follows, we first analyze the
performance of the identification algorithm under replay
attacks. Then, we propose a defense mechanism to mit-
igate the impact of such attacks. Finally, we discuss ex-
tensions of the proposed mechanism.

3 Preliminaries

3.1 Original identification algorithms

Assume that the quantized input uk can take a distinct
values, i.e., uk ∈ {r1, r2, · · · , ra}. Define the input re-
gression pattern as πk = [uk, uk−1, . . . , uk−n1+1], which

has h = an1 possible values, denoted by

τ1 = [r1, r1, · · · , r1]1×n1
,

τ2 = [r1, r1, · · · , r2]1×n1 ,
...

τh = [ra, ra, · · · , ra]1×n1
.

(6)

Assumption 3.1 Persistent excitation condition. The
input regression pattern πk satisfies the persistent exci-
tation requirement if there exists a strictly positive prob-

ability measure such that pl ≜ lim
N→∞

∑N

k=1
I{πk=τl}

N , l =

1, 2, . . . , h. Without loss of generality, assume that the
set of persistently exciting patterns corresponds to in-
dices ι ∈ H = {1, 2, . . . , h0}, where n1 + n2 ≤ h0 ≤ h,
ensuring the identifiability of the system.

Remark 3.1 The persistent excitation condition ex-
tends the classical full-rank requirement to quantized
inpus by ensuring all regression patterns occur with pos-
itive probability. This probabilistic formulation directly
guarantees the non-singularity of the information matrix
through the full column rank of Ωh0

.

Let Γ = [Γ1, . . . ,Γn1
]T denote a full-rank matrix com-

posed of n1 input regression patterns, where each Γi ∈
{τj} for i = 1, . . . , n1 and j ∈ H. The set {Γ1, . . . ,Γn1

}
is referred to as the basic persistently exciting pattern
set. Define Υ = Γθ. Set X1, X2, . . . , Xn be n = n1 + n2
unknown variables. Denote X1 = [X1, . . . , Xn2 ]

T , X2 =
[Xn2+1, . . . , Xn]

T . Consider the following equation set
with X0 ≡ 1.

ξ =


ξ1

ξ2
...

ξh0

 =


∑n2

i=0Xifi(τ1Γ
−1X2)∑n2

i=0Xifi(τ2Γ
−1X2)

...∑n2

i=0Xifi(τh0
Γ−1X2)

 . (7)

Assumption 3.2 There exists a compact set Θ ⊆ Rh0 ,
such that ξ is an interior point of Θ, where

ξ =


ξ1

ξ2
...

ξh0

 =


∑n2

i=0 ηifi(τ1Γ
−1Υ)∑n2

i=0 ηifi(τ2Γ
−1Υ)

...∑n2

i=0 ηifi(τh0
Γ−1Υ)

 . (8)

For ∀ξ ∈ Θ, (7) admits a unique solution, denoted by
[X T

1 ,X T
2 ]T = £(ξ), and £(ξ) is bounded and continuous

at ξ.

For convenience, we denote the solution in Assumption
3.2 as X1 = £1(ξ), X2 = £2(ξ). Consider the system (1)
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with binary measurements (2). In the absence of replay
attacks, under Assumptions 2.1, 3.1, and 3.2, the iden-
tification algorithm defined by (9)-(11) yields consistent
estimates of the system parameters η and θ.

νN,ι =C −F(
1

Nι

N∑
k=1

skI{πk=τι}), (9)

[
η̂TN , Υ̂

T
N

]T
=£(νN ), (10)

θ̂N =Γ−1Υ̂N , (11)

where νN = [νN,1, . . . , νN,h0
]T ; F(·) denotes the inverse

function of Φ(·); Nι =
∑N

k=1 I{πk=τι} with
∑h0

ι=1Nι =
N , ι ∈ H; η̂N is the estimate of the nonlinear parame-

ter η, and Υ̂N is the prediction for Υ; θ̂N denotes the
estimate of the linear parameter θ.

A brief proof is provided for the design and analy-
sis of subsequent algorithms. From (1), there is yk =∑n2

i=0 ηifi(τkθ) + wk =
∑n2

i=0 ηifi(τkΓ
−1Υ) + wk. The

probability of event sk = 1 in the absence of an attack is

E{sk}=Pr {sk = 1}

=Pr

{
wk ≤ C −

n2∑
i=0

ηifi(τkΓ
−1Υ)

}

=Φ(C −
n2∑
i=0

ηifi(τkΓ
−1Υ))

≜Φk, (12)

where E{·} represents mathematic expectation. Due to
πk ∈ {τ1, . . . , τh0}, we have

E{sk} ∈ {E{skI{πk=τ1}}, . . . ,E{skI{πk=τh0
}}}. (13)

From Law of Large Numbers, for each pattern τι,

1

Nι

N∑
k=1

skI{πk=τι} → Φι, w.p.1, as N → ∞. (14)

Combining with (9), we obtain

νN,ι →
n2∑
i=0

ηifi(τιΓ
−1Υ) = ξι,w.p.1, as N → ∞. (15)

By (7), (8) and (10), η̂N = £1(νN ) → η = £1(ξ) and

Υ̂N = £2(νN ) → Υ = Γθ = £2(ξ), w.p.1, as N → ∞,

which yields that θ̂N = Γ−1Υ̂N → Γ−1Υ = θ.

Remark 3.2 Assumption 2.1 is the standard condition
for ensuring the asymptotic normality of the estimator.
Assumption 3.1 ensures that the input signal can contin-
uously and sufficiently excite all dynamic modes of the

system. Assumption 3.2 is the core model-related condi-
tion guaranteeing global structural identifiability.

Remark 3.3 The algorithm (10) and (11) transforms
the complex nonlinear and quantized coupling identifica-
tion problem into a clear and theoretically verifiable two-
stage process by introducing an intermediate variable.

3.2 Algorithm analysis under replay attack

Lemma 3.1 (Hall and Heyde, 1980) Consider a mar-
tingale difference sequence {Xk, Fk, k ≥ 1}. If

E2{
∑N

k=1Xk} < ∞ and
∑N

k=1
E{X2

k}
k2 < ∞, then

1
N

∑N
k=1Xk → 0, w.p.1, as N → ∞.

Assumption 3.3 Let F be a σ-algebra. The quantized
input sequence {uk} is assumed to be an i.i.d. stochastic
Process. Furthermore, uk is measurable with respect to
Fk−1 = σ{wi, δi, i ≤ k− 1}, and satisfies |E{uk}| <∞.

Remark 3.4 Assumption 3.3 differs from most studies
on deterministic inputs. This ensures the convergence
of identification algorithms under replay attacks, with
martingale difference theory serving as proof tools.

Due to the replay nature of the attack, the condi-
tional probability relationships between regression pat-
terns play a key role in analyzing the algorithm’s perfor-
mance. Define the matrix Ψδ ∈ Rh0×h0 , whose element
ψδ
i,j = Pr{πk−δ = ωi|πk = ωj}, i, j ∈ H and δ ∈ U. This

matrix characterizes the influence of the replayed input
pattern (delayed by δ steps) on the current pattern. It
satisfies the following properties. (i) Each column of Ψδ

sums to 1.
∑h0

i=1 ψ
δ
i,j = 1; (ii) For δ = 0, the matrix re-

duces to the identity Ψ0 = Ih0
, where Ih0

denotes the
h0-dimensional identity matrix; (iii) Specifically, ψ0

i,j is

the Kronecker delta, i.e., ψ0
i,i = 1, ψ0

i,j = 0 for i ̸= j.

Theorem 3.1 Consider system (1) and the binary mea-
surement (2). Suppose the system is subjected to a ran-
dom replay attack (µ,Λ). Under Assumptions 2.1, 3.1,
3.2, and 3.3, the parameter estimates generated by the
identification algorithm (9)-(11) are convergent. How-
ever, the estimates do not converge to the true parame-
ters η and θ. Specifically, we have

η̂N →£1(ζ), (16)

θ̂N → Γ−1£2(ζ), (17)

ζ = [C −F(ζ1), . . . , C −F(ζh0
)]
T
, (18)

ζi =

µ∑
δ=0

λδ

h0∑
j=1

ψδ
j,iΦj , i ∈ H. (19)

Proof. In the presence of the attack, from Assumption
3.3, uk is Fk−1-measurable. Considering the regression
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property of the pattern πk, and using (3), (4), (5), and
(12), we obtain

E{sk|Fk−1}
=Pr {sk = 1}

=

µ∑
δ=0

Pr
{
sk = s0k−δ

}
Pr

{
s0k−δ = 1

}
=

µ∑
δ=0

Pr
{
sk = s0k−δ

} h0∑
j=1

Pr{πk−δ = τj}Φj

=

µ∑
δ=0

Pr
{
sk = s0k−δ

} h0∑
j=1

Pr{πk−δ = τj |πk = τk}Φj

=

µ∑
δ=0

λδ

h0∑
j=1

ψδ
j,kΦj . (20)

From (13), E{sk|Fk−1} ∈ {E{skI{πk=τ1}|Fk−1}, . . . ,
E{skI{πk=τh0

}|Fk−1}}. Let υk = (sk − ζk)I{πk=τi}.

Then, by E{sk|Fk−1} = ζk, we have E{υk|Fk−1} = 0,
implying that {υk} is a martingale difference se-

quence. Since υk ∈ (−1, 1), E2{
∑N

k=1 υk} < ∞ and∑∞
k=1

E{υ2
k}

k2 ≤
∑∞

k=1
1
k2 < ∞. Then, by Lemma 3.1,

1
Ni

∑N
k=1(sk − ζk)I{πk=τi} → 0, as N → ∞. This im-

plies that as N → ∞,

1

Ni

N∑
k=1

skI{πk=τi}

=
1

Ni

N∑
k=1

(sk − ζk)I{πk=τi} + ζi → ζi. (21)

Combining with (9)-(11), the theorem is proved. 2

Remark 3.5 In this paper, replay attacks target the
measurement data transmission process without affect-
ing the input signal. Therefore, the persistent excitation
condition remains valid.

3.3 Improved identification algorithm with known at-
tack strategy

Algorithms in (16)-(17) shows that although the orig-
inal algorithm retains convergence under attack, it is in-
herently biased and cannot recover the true parameters
without additional improving or attack detection mech-
anisms. We assume that the attack strategy is known,
and propose an improved identification algorithm by
constructing an attack matrix to achieve consistent pa-
rameter estimation despite the presence of attacks.

Let ψδ
N,i,j =

∑N

k=1
I{πk−δ=τi}I{πk=τj}∑N

k=1
I{πk=τj}

denote the em-

pirical frequency that, given πk = τj , the delayed in-
put pattern πk−δ = τi occurs, based on N data sam-

ples. The matrix Ψδ
N , composed of elements ψδ

N,i,j , cor-

responds to the theoretical matrix Ψδ. Using this, we
construct the h0 × h0-dimension empirical attack strat-
egy matrix ΩN (µ,Λ) =

∑µ
δ=0 λδ(Ψ

δ
N )T . Let βN (µ,Λ) =

Ω−1
N (µ,Λ) denote the inverse of this matrix, with ele-

ments βN,i,j(µ,Λ), i, j ∈ H. Then, by incorporating
βN,i,j(µ,Λ), we improve the original algorithm (9)-(11)
and propose the compensation-based identification al-
gorithm as follows, which is capable of achieving consis-
tency.

η̂N =£1(CN ), (22)

θ̂N =Γ−1£2(CN ), (23)

CN = [C −F(ςN,1), . . . , C −F(ςN,h0)]
T
, (24)

ςN,i =

h0∑
i=1

βN,i,j(µ,Λ)
1

Nj

N∑
k=1

skI{πk=τj}, i ∈ H. (25)

Theorem 3.2 Under the condition of Theorem 3.1,
for a known attack strategy (µ,Λ), if the inverse matrix
β(µ,Λ) of Ω(µ,Λ) exists, then the parameter estimate
provided by the identification algorithm (22)-(25) is con-

sistent, i.e., η̂N → η and θ̂N → θ, w.p.1, as N → ∞.

Proof.According to the statistical properties,E{ψδ
N,i,j} =

ψδ
i,j . From Law of Large Numbers, Ψδ

N → Ψδ, as N →
∞. Likewise,

ΩN (µ,Λ)→
µ∑

δ=0

λδ(Ψ
δ)T ≜ Ω(µ,Λ),

βN (µ,Λ)→Ω−1(µ,Λ) ≜ β(µ,Λ). (26)

Under replay attacks, from (19) and (21), it follows that
as N → ∞,

1
N1

∑N
k=1 skI{πk=τ1}

...

1
Nh0

∑N
k=1 skI{πk=τh0

}

 →


ζ1
...

ζh0

 = Ω(µ,Λ)


Φ1

...

Φh0

 .
By the above, (25), and (26), as N → ∞, we have
ςN,1

...

ςN,h0

 = βN (µ,Λ)


1
N1

∑N
k=1 skI{πk=τ1}

...

1
Nh0

∑N
k=1 skI{πk=τh0

}



→ β(µ,Λ)Ω(µ,Λ)


Φ1

...

Φh0

 =


Φ1

...

Φh0

 . (27)

Finally, from (10), (11), (14), and (15), the consistency
of the estimator follows, completing the proof. 2
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The execution of the compensation-based identifica-
tion algorithm depends heavily on the non-singularity
of ΩN (µ,Λ). This problem is also equivalent to the non-
singularity of Ω(µ,Λ). We give the following theorem.

Theorem 3.3 Assuming that the regression pattern is
connected and irreducible, the matrix Ω(µ,Λ) is singular
if and only if λ0 = 0.

Proof. Given that the regression pattern is connected
and irreducible, for any i, j ∈ H and δ ≥ 1, ψδ+1

i,j =∑
l∈H ψδ

i,lψ
1
l,j , which implies Ψδ+1 = ΨδΨ1 = (Ψ1)δ+1.

At δ = n1, we have ψn1
i,j = Pr{πk−n1

= ωi|πk =

ωj} =
Pr{πk−n1

=ωi,πk=ωj}
Pr{πk=ωj} . This can be decomposed

as a product of input probabilities Pr{uk−n1 =
πk−n1,1} · · ·Pr{uk−2n1+1 = πk−n1,n1}. Similarly, at
δ = n1 + 1,

ψn1+1
i,j = Pr{πk−n1−1 = ωi|πk = ωj}

= Pr{uk−n1−1 = πk−n1−1,1}
· · ·Pr{uk−2n1

= πk−n1−1,n1
}I{uk−n1

∈{r1,··· ,ra}}.

Let ℓi denote an eigenvalue of Ψ1. Then, ℓn1
i and ℓn1+1

i
are eigenvalues of Ψn1 and Ψn1+1, respectively. Since
Ψn1 = Ψn1+1, we have ℓn1

i = ℓn1+1
i , implying ℓi is 0

or 1. Given that the matrix order h0 > n1, there exists
exactly one eigenvalue equal to 1 and the remaining h0−
1 eigenvalues are 0. From ΩT (µ,Λ) =

∑µ
δ=0 λδΨ

δ =
λ0Ih0

+ λ1Ψ
1 + · · · + λµΨ

µ, it follows that |Ω(µ,Λ)| =
|ΩT (µ,Λ)| = 1 ·λ0 · · ·λ0︸ ︷︷ ︸

h0−1

= (λ0)
h0−1. Therefore, Ω(µ,Λ)

is singular if and only if λ0 = 0. 2

In the case of extreme conditions λ0 = 0, a transmis-
sion side adjustment scheme has been developed to en-
sure the feasibility of the identification algorithm. See
Subsection 5.3 for details.

4 Defense mechanism and algorithm design

To achieve consistent parameter estimation, this sec-
tion introduces a defense mechanism against replay at-
tacks by a binary stochastic flag generator and prepro-
cessing the transmitted data at the transmission-side.

yk sk
0 Fusion Data center

Communication 
Network

sk
Ɗk 

Flag
 Generator

Defense 
module

Tk
0

Binary
 sensor

Adding

Sk 0

 

Fig. 2. Defense module diagram

As illustrated in Fig. 2, the proposed defense mech-
anism inserts a defense module before data transmis-
sion to process the original observation s0k. Two distinct
processing strategies are adopted. The adding-based ap-
proach, which generatesDk, is detailed in Subsection 4.1;
The fusion-based approach, which generates S0

k , is pre-
sented in Subsection 4.2. Then, the processed data are
transmitted to the data center for subsequent identifica-
tion.

4.1 Sending mechanism based on adding flag

Under the adding-based approach, the attacker targets
Dk, such that{
sk = Dk−δk ,

Pr{sk = Dk−δk} = λδk ,
(28)

where δk ∈ U. Dk is constructed by concatenating a bi-
nary flag T 0

k with the raw sensor measurement s0k, i.e.,
Dk = T 0

k ⊕ s0k = T 0
k |s0k. At the data center, a separa-

tion operation is performed to recover the attacked flag
Tk and sensor data zk, denoted by ⊖0(sk) = Tk and
⊖1(sk) = zk, respectively. Accordingly, Tk = T 0

k−δk
and

zk = s0k−δk
.

To estimate attack strategies, the amount of informa-
tion carried by the defense design must be no less than
the maximum offset µ plus one that an actual attack
could potentially cause. This is sufficient to uniquely dis-
tinguish every possible timing misalignment pattern re-
sulting from an attack (i.e., from no attack to the max-
imum delay of µ steps, totaling µ + 1 states). To sim-
plify the analysis of the problem, we define µ = µ + 1.
In what follows, our goal is to estimate the attack prob-
ability Λ. In practice, even when µ is completely un-
known, we can select sufficiently large µ such that the
designed mechanism still achieves consistent estimation,
as demonstrated in the simulation results of Figs. 11 and
12.

A binary flag sequence is defined as a stochastic se-
quence with specific statistical properties that is actively
generated by the sender and injected into measurement
data. Its core function is to serve as a covert timing car-
rier, enabling the receiver to detect and compensate for
timing inaccuracies caused by replay attacks within the
data. The design of the flag sequence {T 0

k } satisfies the
following statistical properties. (i) Periodicity. The se-
quence follows a periodic stochastic structure with pe-
riod µ; (ii) Binary stochastic feature. Within each pe-
riod, the flag at position j is generated independently
as a Bernoulli trial with parameter Gj ∈ [0, 1], i.e.,
Pr{T 0

k = 1} = Gj ; (iii) Independence. Flag generation
is statistically independent across positions within each
period, and across periods for the same position. It is
also independent for s0k.
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These pre-designed statistical properties are the core
enabling the defense mechanism. The designed identi-
fication algorithm, by comparing and utilizing changes
in these statistical properties, constructs the estimation
equations, thereby enabling the simultaneous resolution
of both the attack strategy and the system parameters.
According to the nature of the flag and replay attack,
we establish the following linear equation set with linear
constraints 0 ≤ λ0, λ1, . . . , λµ ≤ 1 and 1Λ = 1.



∑µ
δ=0 λδG1−δ = ρ1(µ,Λ)∑µ
δ=0 λδG2−δ = ρ2(µ,Λ)

...∑µ
δ=0 λδGµ−δ = ρµ(µ,Λ)

. (29)

We can rewrite (29) as

Π · Λ = [ρ1, ρ2, . . . , ρµ]
T ≜ ρ. (30)

Π is a right circulant matrix with the first row element
G1, Gµ, . . . , G2, entirely determined by preset values.
Guo et al. (2025) provided a sufficient but not necessary
condition for the invertibility of Π, that is, µ is a prime
number and Gi ̸= Gj with i ̸= j.

Remark 4.1 Tagging/Labeling typically refers to meta-
data used to classify, identify, or authenticate data con-
tent or sources. Indicators are metrics reflecting faults
or attacks. Watermarks are employed for attack detec-
tion purposes. The flag draws inspiration from the active
watermark injection to restore temporal information.

Based on the sending mechanism based on adding flag,
and the “principle of necessary equivalence”, the identi-
fication algorithm is designed as follows.

Λ̂N =Π−1LN , (31)

LN,j =
1

LN,j

N∑
k=1

TkI{mod(k−1,µ)+1=j}, j ∈ U , (32)

η̂N = [QN,1, . . . ,QN,n2
]T , (33)

θ̂N =Γ−1[QN,n2+1, . . . ,QN,n]
T , (34)

QN =£(ξN ), (35)

ξN = [C −F(ϱN,1), . . . , C −F(ϱN,h0)]
T
, (36)

ϱN,i =

h0∑
ι=1

βN,i,ι(Λ̂N )
1

Nι

N∑
k=1

zkI{πk=τι}, i ∈ H, (37)

where Λ̂N is the estimate for Λ; LN = [LN,1, . . . ,LN,µ]
T ;

LN,j =
∑N

k=1 I{mod(k−1,µ)+1=j}; mod(a1, a2) is remain-
der function, representing the remainder of a1 divided
by a2; U = {1, . . . , µ}.

Remark 4.2 The sender and receiver must reach con-
sensus on the period and generation parameter Gj (not
the specific flag data), as well as the fusion rules, before
initiating communication.

Theorem 4.1 Under the condition of Theorem 3.1, for
the unknown attack probability Λ, based on the sending
mechanism of adding flag, the identification algorithm

defined by (31)-(37) is consistent and yields Λ̂N → Λ,

η̂N → η, and θ̂N → θ, w.p.1, as N → ∞.

Proof. According to (28), we have

E{Tk}=Pr {Tk = 1}
=Pr

{
Tk = T 0

k−δk
, T 0

k−δk
= 1

}
=

µ∑
δ=0

Pr {δk = δ}Pr
{
T 0
k−δ = 1

}
=

µ∑
δ=0

λδGk−δ

≜ ρk. (38)

Due to the periodic nature of {T 0
k }, it follows that

E{TkI{mod(k−1,µ)+1=j}} = E{Tj} = ρj . By Law of
Large Numbers, LN,j → E{TkI{mod(k−1,µ)+1=j}} =

ρj ,w.p.1, as N → ∞. Hence, there is Λ̂N = Π−1LN →
Π−1ρ = Λ, w.p.1, as N → ∞. The theorem is proved
from the proof of Theorem 3.2. 2

Traditional timestamps or random numbers-based
mechanisms contain rich information (specific time val-
ues or numerical values), requiring high communication
bandwidth and resolution for transmission and verifica-
tion. The adding flag mechanism occupies only 1 bit of
bandwidth and does not require complex data parsing.
Although this mechanism has seen improvements in
bandwidth aspects, it still incurs a certain communica-
tion cost.

4.2 Sending mechanism of data-flag fusion

To address bandwidth burden, we design a data-flag
fusion mechanism. At time k, the sensor data and the
flag to be transmitted are fused into a new data S0

k ,
which occupies only 1 bit. This design ensures compat-
ibility with the data format of binary communication
networks, thereby preserving communication efficiency
and the benefits of binary signaling. As illustrated in
Fig. 2, the defense module generates the fused data S0

k
through the fusion-based approach, defined by the rule

S0
k = I{s0

k
·T 0

k
=1} =

{
1, s0k = T 0

k = 1,

0, others.
(39)

Under random replay attacks, the data received by the
data center at time k becomes sk = S0

k−δk
, similar to
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the form in (28). When sk = 1, both T 0
k−δk

= 1 and

s0k−δk
= 1 must hold.



∑µ
δ=0 λδG1−δ

∑h0

ι=1 ψ
δ
ι,1Φι = z1,1∑µ

δ=0 λδG2−δ

∑h0

ι=1 ψ
δ
ι,1Φι = z1,2

...∑µ
δ=0 λδGµ−δ

∑h0

ι=1 ψ
δ
ι,1Φι = z1,µ

...∑µ
δ=0 λδGj−δ

∑h0

ι=1 ψ
δ
ι,iΦι = zi,j

...∑µ
δ=0 λδGµ−δ

∑h0

ι=1 ψ
δ
ι,h0

Φι = zh0,µ

. (40)

For h0+µ unknown variables Φi and λδ, δ ∈ U, i ∈ H,
j ∈ U , we establish the equation set in (40). Under the
condition that the equation has a solution, the procedure
for computing the solution is given as follows.

Step 1. Expand the equation set with respect to sub-
script j, resulting in a vector equation for each j.∑µ

δ=0 λδGj−δ(Ψ
δ)TΦ = zj ,where zj = [z1,j , . . . , zh0,j ]

T ;
Φ = [Φ1, . . . ,Φh0

]T .

Step 2. Left-multiply both sides of the above equation
by ((Ψ1)T )n1 , yielding

∑µ
δ=0 λδGj−δ((Ψ

1)T )n1(Ψδ)TΦ =
((Ψ1)T )n1zj . By the result of Theorem 3.3, this can be
simplified to

∑µ
δ=0 λδGj−δ((Ψ

1)T )n1Φ = ((Ψ1)T )n1zj .

Step 3.Let
∑µ

δ=0 λδG1−δ = κ1 = 1. Then,
∑µ

δ=0 λδG2−δ =

((Ψ1)T )n1z2/((Ψ
1)T )n1z1 ≜ κ2, . . .,

∑µ
δ=0 λδGµ−δ =

((Ψ1)T )n1zµ/((Ψ
1)T )n1z1 ≜ κµ, where X2/X1 denotes

the norm ratio of two vectors, i.e., ||X2||
||X1|| . According to

(30), we obtain [1, κ2, . . . , κµ]
T = κρ.

Step 4. Output the solution.

Λ =
Π−1[κ1, . . . , κµ]

T

1Π−1[κ1, . . . , κµ]T
, (41)

Φ=
1

µ

µ∑
j=1

(

µ∑
δ=0

λδGj−δ(Ψ
δ)T )−1zj . (42)

Denote the solution to the equation set (40) obtained
via Steps 1-4 as (Φ,Λ) = Ξ([zi,j ]), where [zi,j ] repre-
sents the column vector obtained by arranging (i, j) =
(1, 1), (1, 2), . . . , (h0, µ).

The identification algorithm (43)-(48) comprises three
components. First, both communication parties must
pre-share the flag bit generation rules and fusion rules.
Second, the receiver calculates empirical frequencies at

different positions based on the received data, utilizing
the flag bit index and input regressions. Third, based on
(40), the attack strategy and system parameter estima-
tion are computed according to Steps 1-4.

φN,i,j =
1

Ńi,j

N∑
k=1

skI{πk=τi}I{mod(k−1,µ)+1=j}, (43)

(κN ,ℵN ) = Ξ([φN,i,j ]), (44)

Λ̂N = ℵN , (45)

η̂N =£1(ϖN ), (46)

θ̂N =Γ−1£2(ϖN ), (47)

ϖN = [C −F(κN,1), . . . , C −F(κN,h0
]T , (48)

where Ńi,j =
∑N

k=1 I{πk=τi}I{mod(k−1,µ)+1=j}; i ∈ H;
j ∈ U .

Theorem 4.2 With the condition of Theorem 3.1, for
the unknown Λ, using the data-flag fusion mechanism
(39) and the identification algorithm (43)-(48), the esti-
mates are consistent.

Proof. By (20), (38), and (39), it follows that

E{sk|Fk−1}=Pr {sk = 1}

=

µ∑
δ=0

Pr
{
sk = S0

k−δ

}
Pr

{
S0
k−δ = 1

}
=

µ∑
δ=0

λδ Pr
{
T 0
k−δ = 1

}
Pr

{
s0k−δ = 1

}
=

µ∑
δ=0

λδGk−δ

h0∑
ι=1

ψδ
ι,kΦι

≜ ℏk,k. (49)

ℏi,j =
∑µ

δ=0 λδGj−δ

∑h0

ι=1 ψ
δ
ι,iΦι. Since πk ∈ {τ1, . . . , τh0

},
and the flag sequence is periodically generated, it follows
that the process (sk − ℏk,k)I{πk=τi}I{mod(k−1,µ)+1=j}
constitutes a martingale difference sequence. Hence,

φN,i,j → ℏi,j , w.p.1, as N → ∞. (50)

According to (40), replace zi,j with ℏi,j . Since Π is in-
vertible, combining (30), we have Π−1[κ1, . . . , κµ]

T =
κΠ−1ρ = κΛ. As 1Λ ≡ 1, it holds that Λ =
Π−1[κ1,...,κµ]

T

1Π−1[κ1,...,κµ]
T . Therefore, we obtain (Φ,Λ) = Ξ([ℏi,j ]).

From (50), we get

(κN ,ℵN ) = Ξ([φN,i,j ]) → (Φ,Λ) = Ξ([ℏi,j ]),
w.p.1, as N → ∞. (51)

Furthermore, from (9), (15), and (48), we have ϖN →
ξ, w.p.1, as N → ∞. Finally, by (10) and (11), the
theorem is proved. 2
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Remark 4.3 The fusion mechanism can be applied al-
most directly to the Hammerstein system with a similar
block structure. The primary modification lies in the uni-
fied nonlinear equation system (8).

4.3 Algorithm performance analysis

Lemma 4.1 (Kay, 1993) Let Xk ∼ N (µX ,ΣX) be a k-
dimensional Gaussian random vector. Then, for any ma-
trix A ∈ Rm×k and B ∈ Rm, the affine transformation
AXk +B ∼ N (AµX +B,AΣXA

T ).

Lemma 4.2 (Chow and Teicher, 1997) Let {Xk}, {Yk},
{Zk}, and {Wk} be sequences of random variables. Sup-

pose Xk
d→ X, Yk

d→ Y , Zk
p→ m, and Wk

p→ n,
where m and n are finite constants. Then, it follows that

WkXk + Yk + Zk
d→ nX + Y + m, k → ∞, where

d→
denotes convergence in distribution and

p→ denotes con-
vergence in probability.

Let diag(Xi) be the diagonal matrix obtained by ar-
ranging the elements Xi on the main diagonal in order
of subscript i. Denote ζ = [ζ1, . . . , ζh0 ]

T , C = β(Λ)ζ,

D(ξ) = [£d
1(ξ), . . . ,£

d
h0
(ξ)]T , (52)

where £d
i (ξ) = ∂£i(ξ)

∂ξ = [∂£i(ξ)
∂ξ1

, . . . , ∂£i(ξ)
∂ξh0

]T , i ∈ H.

Similarly,

X (Λ) = [C d
1 (Λ), . . . ,C

d
h0
(Λ)]T , (53)

J (ℏ) = [Ξd
1(ℏ), . . . ,Ξd

h0+µ(ℏ)]T . (54)

The asymptotic normality of the algorithm (31)-(37) is
as follows.

Theorem 4.3 Under the condition of Theorem 4.1, if
the partial derivatives of £ with respect to ξ exist, then as
N → ∞, the estimate QN given by (31)-(37) is asymp-
totically normal.

√
N(QN − Q)

d→ (0,Σ0), (55)

where Q = [ηT ,ΥT ]T = £(ξ); ξ is given by (8);
Σ0 = RX (Λ)Π−1diag(µ(ρj − ρ2j ))(RX (Λ)Π−1)T +

Rβdiag( ζi−ζ2
i

pi
)(Rβ)T ; R = D(ξ)diag(H (Φi)); D(ξ)

and X (Λ) are given by (52) and (53), respectively;
ζi and ρj are defined in (19) and (38), respectively;
H (·) = 1

Φ̇(x)
denotes the reciprocal of the derivative

of Φ(·), that is, the reciprocal of the noise probability
density function; pi = limN→∞

Ni

N ; i ∈ H, j ∈ U .

Proof. See Appendix A for details.

Theorem 4.4 Under the condition of Theorem 4.2, if
the partial derivative ∂Ξ

∂ℏ exists, then asN → ∞, the esti-

mate χN = [κT
N ,ℵT

N ]T obtained from (43)-(44) satisfies
the following asymptotic normality.

√
N(χN − χ)

d→ (0,Σ1), (56)

where χ = [ΦT ,ΛT ]T ; Σ1 = J (ℏ)Σ2J T (ℏ); Σ2 =

diag(
ℏι−ℏ2

ι

ṕι
); J (ℏ) is given in (54); ṕi,j = limN→∞

Ńi,j

N ;

ℏ = [ℏ1,1, ℏ1,2, . . . , ℏi,j , . . . , ℏh0,µ]
T ; ι = (i, j) =

(1, 1), (1, 2), . . . , (h0, µ).

Proof. From (49) and (50), we get E{(sk −E{sk})2} =
ℏi,j − ℏ2i,j . Again, by (43), Central Limit Theorem, the

independence of the noise and flag, and limN→∞
Ńi,j

N =
ṕi,j , as N → ∞, we have


√

N
Ń1,1

√
Ń1,1(φN,1,1 − ℏ1,1)

...√
N

Ńh0,µ

√
Ńh0,µ(φN,h0,µ − ℏh0,µ)

 d→ N (0,Σ2). (57)

By (51) and Mean Value Theorem, there exists φi,j be-
tween ℏi,j and φN,i,j such that

χN − χ = J (φ)(φN − ℏ), (58)

where φN = [φN,1,1, φN,1,2, . . . , φN,i,j , . . . , φN,h0,µ]
T ; φ

corresponds toφN and ℏ.WithN → ∞, there areφi,j →
ℏi,j such that according to (57), (58) and Lemma 4.1,
(56) holds. 2

According to (56), the covariance matrix

Σ1(G) = J (G)diag(
ℏi,j(G)− ℏi,j(G)2

ṕi,j
)J T (G) (59)

is highly dependent on the identification parametersG =
[G1, G2, . . . , Gµ]

T . Therefore, by adjusting G, the esti-
mation error can be minimized. Furthermore, from (30)
and (41), it can be observed that when estimating Λ
via Π(G)−1ρ, a large condition number of Π(G) (when
it is nearly singular) leads to numerical instability. In
such cases, small perturbations in ρmay be significantly
amplified during inversion, resulting in substantial esti-
mation bias for Λ. Therefore, it is necessary to explic-
itly constrain the condition number of Π(G), defined

as cond(Π(G)) = σmax(Π(G))
σmin(Π(G)) , where σmax and σmin de-

note the largest and smallest singular values of Π(G), re-
spectively. Based on the above, we formulate the follow-
ing constrained optimization problem for the estimates,
aiming to minimize the trace of the covariance matrix
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TR(Σ1(G)).

min
G=[G1,G2,...,Gµ]

T∈[0,1]µ
TR(Σ1(G)) (60)

s.t. cond(Π(G)) ≤ cond0, (61)

where cond0 is a predefined threshold, typically set to a
small value (e.g., cond0 = 10) to ensure the numerical
stability.

Due to the non-convexity of both the objective func-
tion and the constraint, obtaining the global optimum in
closed form is intractable. Therefore, numerical methods
are required to solve the problem. Two common strate-
gies are as follows. (I). Grid search. Since Gj ∈ [0, 1],
the interval can be uniformly discretized with step size
∆j ∈ (0, 1). The resulting Cartesian product forms a fi-
nite search space over which the optimal solution satis-
fying the constraint can be sought via exhaustive search
(Liu et al., 2025). (II). Convex relaxation. The non-
convex problem can be relaxed into a semidefinite pro-
gramming formulation, allowing for approximate global
optimization using convex optimization techniques (Liu
et al., 2025). A similar approach can be applied to The-
orem 4.3; for brevity, it is omitted here.

Remark 4.4 In addition to {Gj}, the system input con-
figuration, quantization threshold selection, and flag pe-
riod can all serve as system-level optimization metrics.

5 Several technical issues

5.1 Extension of multi-threshold measurement

Compared with the limited information in binary mea-
surements, multi-threshold measurements offer greater
flexibility in handling complex environments, dynamic
changes, andmulti-objective requirements. Therefore, in
this subsection, we extend the data-flag fusion mecha-
nism to this scenario to enhance the adaptability.

The system structure in (1) remains unchanged. The
binary measurement is generalized to a multi-threshold
setting, where the output yk is measured through a sen-
sor with a finite number (m) of thresholds −∞ = C0 <
C1 < · · · < Cm < Cm+1 = +∞. The quantized output
s0k is then given by

s0k =

m+1∑
q=1

εqI{Cq−1<yk≤Cq}, (62)

where s0k ∈ E = {ε1, ε2, . . . , εm+1}, and εi < εj for
i < j. The design rule for the flag remains the same as
described in Section 4. The data-flag fusion mechanism

is extended as follows.

S0
k =

{
s0k, T 0

k = 1,

εm+1, others.
(63)

The random replay attack strategy remains unchanged,
and the data center receives sk = S0

k−δk
at time k. Upon

receiving sk, the data center performs preprocessing to
obtain

§(sk) = [s1k, s
2
k, . . . , s

m
k ], sik = I{sk≤εi}, (64)

with i = 1, 2, . . . ,m. Based on the mechanism (63) and
the preprocessing step (64), the following algorithm can
be designed.

η̂N =£1(LN ), (65)

θ̂N =Γ−1£2(LN ), (66)

LN = [W1
N , . . . ,Wm

N ]h0×mT , (67)

Wι
N =

[
Cι −F(A ι

N,1), . . . , Cι −F(A ι
N,h0

)
]T
,(68)

Λ̂N = [B1
N , . . . ,B

m
N ](µ+1)×mT , (69)

(A ι
N ,B

ι
N ) = Ξ([γιN,i,j ]), (70)

γιN,i,j =
1

Ńi,j

N∑
k=1

sιkI{πk=τi}I{mod(k−1,µ)+1=j}, (71)

where Ńi,j is defined in (43); i ∈ H, j ∈ U , and ι ∈
{1, 2, . . . ,m}; T = [T1, . . . ,Tm]T satisfies 1T = 1, and
eachTι ∈ [0, 1].Wι

N andBι
N represent the ι-th unbiased

estimate of ξ and Λ, respectively. By choosing an ap-
propriate weighting vector T , a minimum-variance (or
most efficient) estimate can be obtained. Therefore, LN

and Λ̂N are referred to as Quasi-convex combination es-
timators (Wang et al., 2010).

Theorem 5.1 Consider system (1) under the multi-
threshold measurement (62), subject to replay attacks
with probability Λ. Under Assumptions 2.1, 3.1, 3.2,
and 3.3, the proposed algorithm (65)-(71) enables the
consistent estimation.

Proof. Φ(Cι −
∑n2

i=0 ηifi(τkΓ
−1Υ)) ≜ Φι

k. From As-
sumption 3.3, (62), (63), and (64), we obtain

E{sιk|Fk−1}
=Pr {sιk = 1}

=

µ∑
δ=0

Pr
{
sk = S0

k−δ

}
Pr

{
T 0
k−δ = 1

}
Pr

{
s0k ≤ εi

}
=

µ∑
δ=0

λδGk−δ

h0∑
l=1

ψδ
l,kΦ(Cι −

n2∑
i=0

ηifi(τlΓ
−1Υ))

=

µ∑
δ=0

λδGk−δ

h0∑
l=1

ψδ
l,kΦ

ι
l
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≜Pι
k,k. (72)

Pι
i,j =

∑µ
δ=0 λδGj−δ

∑h0

l=1 ψ
δ
l,iΦ

ι
l . It is evident that

(sιk−Pι
k,k)I{πk=τi}I{mod(k−1,µ)+1=j} forms amartingale

difference sequence, implying γιN,i,j → Pι
i,j , asN → ∞,

according to Lemma 3.1. In the equation set (40), re-
placing Φ with Φι = [Φι

1, . . . ,Φ
ι
h0
]T and using (72),

we obtain (A ι
N ,B

ι
N ) = Ξ([γιN,i,j ]) → (Φι,Λ) =

Ξ([Pι
i,j ]), w.p.1, as N → ∞. From (7) and (68), it fol-

lows that Wι
N is an unbiased estimator of the ι-th com-

ponent of ξ. Moreover, by (67), LN → ξ, w.p.1, asN →
∞. Finally, by (10) and (11), the theorem is proved. 2

Remark 5.1 If the measurement data does not take the
m + 1-th value, then the specific data value is less than
the maximum threshold. That is, for each threshold, the
binary indicators after comparing the measurement data
are both 1. This is equivalent to constructing m parallel
binary measurement channels, each corresponding to a
specific quantization interval. The remaining content is
identical to the binary case.

Remark 5.2 Under binary measurements, each sample
requires a finite number of index checks and accumula-
tions, with a time complexity of O(N). By pre-computing
the eigenvalue decomposition of Ψ, each matrix inver-
sion only updates coefficients, resulting in an overall
complexity of O(1) for this stage. Under multi-threshold
measurement, the complexity for m statistics increases
to O(mN), while the computationally intensive matrix
polynomial inversion can be shared across m thresholds.
Thus, the total online time complexity for multi-threshold
measurement is O(mN) + O(1), where the first term
represents data traversal overhead and the second O(1)
term encapsulates all fixed costs independent of N but
dependent on the system dimensions h0 and m.

5.2 Practical source of flag

The flag Tk originates from a binary comparison out-
put of a gain module driven by a periodic input with
period µ. Specifically, we define

tk = BkA+ ek, (73)

where ek ∼ N (0, σ2
e) is an i.i.d. Gaussian variable inde-

pendent of the system noise wk; Bk is a periodic input
with period µ, taking values in {b1, . . . , bµ} and satisfy-
ing Bk = Bk−µ; A is the gain coefficient; T 0

k is obtained
by comparing tk with a threshold CT , expressed as

T 0
k = I{tk≤CT } =

{
1, tk ≤ CT ;

0, others.
(74)

Given the periodic sequence {Bk}, gain coefficient A,
distribution of ek, and threshold CT , the flag sequence

generated by (73) and (74) exhibits the desired sta-
tistical properties (Wang et al., 2010). The parameter
Gj = Pr{T 0

k = 1} = Fe(CT − bjA), where Fe(·) is the
cumulative distribution function of ek. This variable en-
sures the stochastic feature of the flag, and its effects are
already reflected in the design parameters {Gj}. It does
not adversely affect the convergence of the main identi-
fication algorithm.

5.3 Handling extreme attack scenarios

As indicated by Theorem 3.3, the identification algo-
rithm (22)-(24) becomes invalid when λ0 = 0. Further-
more, from (42), we see that when λ0 = 0, the ma-
trix

∑µ
δ=0 λδGj−δ(Ψ

δ)T has a zero eigenvalue, making
it non-invertible and preventing valid estimation of Φ.
To address this extreme situation, we propose a commu-
nication adjustment scheme to ensure algorithmic feasi-
bility and stability. Specifically, we define

Zk = S0
k+ϵ = I{s0

k+ϵ
=T 0

k+ϵ
=1}, (75)

where Zk is the data transmitted from the sender to the
data center. s0k+ϵ and T 0

k+ϵ denote the sensor measure-
ment and flag, respectively. ϵ is chosen based on Λ such
that ϵ = min{i ∈ U|λi ̸= 0}. In this case, we have

Pr {sk = 1}

=

µ∑
δ=0

Pr
{
sk = S0

k+ϵ−δ

}
Pr

{
S0
k+ϵ−δ = 1

}
=

µ∑
δ=0

Pr
{
sk = S0

k−(δ−ϵ)

}
Pr

{
S0
k−(δ−ϵ) = 1

}
=

µ−ϵ∑
υ=0

λυGk−υ

h0∑
ι=1

ψυ
ι,kΦι.

Thus, the effective impact of the attack probability be-
comes [λ0, λ1, . . . , λµ−ϵ, 0, . . . , 0]

T . This transformation
circumvents the case λ0 = 0 and ensures the robustness
of the algorithm under extreme conditions.

Remark 5.3 This strategy serves as a “disaster recov-
ery mechanism” with full-time replay attacks rendering
communication channels completely unreliable. While
this introduces additional time delays, it offers certain
potential benefits.

6 Numerical simulation

Consider a SISO discrete-time Wiener system.{
yk = 1 + η1

x2
k

20 + η2
2xk

20 + wk,

xk = θ1uk + θ2uk−1,
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Fig. 3. Convergence of algorithms (9)-(11) under replay at-
tacks
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Fig. 4. Consistency of algorithms (22)-(25) with known at-
tacks
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Fig. 5. Identification effect of algorithms (31)-(37) for Λ

where order n1 = n2 = 2; Unknown parameters θ =
[θ1, θ2]

T = [−1, 2]T and η = [η1, η2]
T = [10,−10]T ; The

quantized input uk ∈ {−1, 1}, and the regression pat-
terns τ1 = [−1,−1], τ2 = [−1, 1], τ3 = [1,−1], τ4 = [1, 1]
satisfy the persistent excitation condition in Assump-
tion 3.3. The full-rank matrix is defined as Γ = [τ3, τ4]

T .
The binary sensor threshold C = 0, and the noise wk ∼

N (0, 52), satisfying Assumption 2.1. The measured data
s0k is subject to random replay attacks characterized by
(µ,Λ) during transmission to the data center. A data
sample N = 20000.

Under a replay attack strategy (µ, [λ0, λ1, λ2, λ3]
T ) =

(3, [0.5, 0.1, 0.3, 0.1]T ), the convergence of the algo-
rithms is shown in Fig. 3, where the estimates η̂N and

θ̂N converge to £1(ζ) and Γ−1£2(ζ), respectively, ver-
ifying Theorem 3.1. For the known attack strategy,
parameters η and θ are estimated using algorithms (22)-
(25), with results shown in Fig. 4. These results confirm
consistent estimation, in accordance with Theorem 3.2.
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Fig. 6. Identification effect of algorithms (31)-(37) for η and
θ
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Fig. 7. Performance of algorithms (43)-(48) for Λ

For the unknown attack strategy case, set A = 1, the
input bk cycles through [0.4, 2, 1, 4], and ek ∼ N (0, 22)
is an i.i.d. Gaussian variable independent of wk. Set the
threshold CT = 3 to generate the flag T 0

k . µ = µ+1 = 4.
(I). Using the adding-based mechanism, compute
Dk = T 0

k ⊕ s0k and apply algorithms (31)-(37) for joint
estimation of Λ and parameters η, θ, as shown in Figs.
5 and 6. The results confirm consistent estimation, val-
idating Theorem 4.1. (II). The data-flag fusion mech-
anism yields new data S0

k = I{s0
k
·T 0

k
=1}. Algorithms

(43)-(48) are applied with results shown in Figs. 7 and 8,

13



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

-100

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
N 104

-5

0

5

10

Fig. 8. Performance of algorithms (43)-(48) for η and θ
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Fig. 9. Asymptotic performance of algorithms (43)-(48) for
estimating χ in (56)

verifying Theorem 4.2. (III). To evaluate performance,
we approximate the true error TR(Σ1) by averaging
TR(N(χN − χ)2) under 150 trajectories. For compari-
son, use optimal parameters G(0) = [1, 0.63, 1, 1]T and
suboptimal parameters G(1) = [0.90, 0.69, 0.84, 0.31]T ,
G(2) = [0.50, 0.31, 0.5, 0.07]T , and plot the results in
Fig. 9. All cases show asymptotic convergence, with
the optimal setting yielding the lowest error. Simi-
larly, for Theorem 4.3 concerning asymptotic normality
and parameter optimization, use Ǵ(0) = [0.18, 1, 1, 1]T

and suboptimal Ǵ(1) = [0.16, 0.69, 0.84, 0.67]T , Ǵ(2) =
[0.067, 0.16, 0.50, 0.70]T to obtain Fig. 10, whichmatches
theoretical predictions. The additional µ̂ = µ+2 = µ+3
is selected. According to the simulation results in Figs.

11 and 12, in the attack strategy estimation Λ̂N , the
components corresponding to δ > µ converge to values
close to zero, while the other components and system
parameters are accurately estimated, consistent with
the theoretical analysis.

For the multi-threshold sensor case with m = 3
thresholds C1, C2, C3 = −2, 0, 5, and measurement
data E = {1, 2, 3, 4}, generate new data S0

k using

(63). To test robustness, consider an attack strategy
(µ, [λ0, λ1, λ2, λ3]

T ) = (3, [0.4, 0.1, 0, 0.5]T ). Upon re-
ceiving sk, the data center processes it using (64) and
applies algorithms (65)-(71). The results in Figs. 13 and
14 validate Theorem 5.1. Under the extreme condition
(µ, [λ0, λ1, λ2, λ3]

T ) = (3, [0, 0.3, 0.5, 0.2]T ) with λ0 = 0,
leading to ϵ = 1, the adjustment scheme (75) is used
to transmit Zk = S0

k+1. The data center applies algo-
rithms (43)-(48), with results shown in Figs. 15 and 16.

The estimate Λ̂N converges to [0.3, 0.5, 0.2, 0]T , ensur-
ing the correctness of the output (42), thus validating
the effectiveness of the adjustment scheme.
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Fig. 10. Asymptotic performance of algorithms (31)-(37) for
estimating Q in (55)
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Fig. 11. Λ estimation using algorithms (43)-(48) with
µ̂ > µ+ 1

Finally, there is a comparison and analysis of methods.
The adding-based mechanism, the two stage method
(Guo et al., 2025), and the fusion mechanism are used
for performance comparison. Set (µ, [λ0, λ1, λ2, λ3]

T ) =
(3, [0.5, 0.1, 0.3, 0.1]T ) and µ = 6. System settings re-
main unchanged. (i) Communication overhead. Neither
the two stage method nor the fusion mechanism intro-
duces additional bit overhead, preserving the channel’s
data transmission efficiency. The adding-based mecha-
nism, however, requires an extra bit of overhead. (ii) Es-
timation effect. The curves depicting the estimation er-
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Fig. 12. Parameter estimations using algorithms (43)-(48)
with µ̂ > µ+ 1
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Fig. 13. Consistency of algorithms (65)-(71) for Λ with mul-
ti-threshold measurement
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Fig. 14. Consistency of algorithms (65)-(71) for η and θ with
multi-threshold measurement

ror of attack strategies, η, and θ (measured by the L2-
norm ||·|| between estimated and true values) as increas-
ing N are shown in Fig. 17. The results indicate that
compared with the two stage method, the fusion mecha-
nism exhibits lower overall error and faster convergence
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Fig. 15. Estimate effect of algorithms (43)-(48) for Λ using
adjustment scheme

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

-40

-20

0

20

40

60

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N 104

-5

0

5

10

15

20

25

Fig. 16. Estimate effect of algorithms (43)-(48) for η and θ
using adjustment scheme
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Fig. 17. Comparison results on estimation errors

speed. Previous results in Figs. 5-6 and Figs. 7-8 indicate
that the adding-based mechanism exhibits faster con-
vergence, which is attributable to increased communi-
cation overhead. (iii) To assess predictability, a window
lengthWl = 50 is selected, and the information entropy

of this window is computed as − log2
∑Wl

i=1 s(i)/Wl −
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Fig. 18. Comparison results on security (information en-
tropy)

log2
∑Wl

i=1(1 − s(i))/Wl. As the number of windows in-
creases, the curve of information entropy changes as
shown in Fig. 18. The information entropy has con-
verged, while the proposed fusion mechanism exhibits
higher information entropy, greater uncertainty, and en-
hanced security.

7 Concluding remarks

This paper tackles the problem of parameter identi-
fication for quantized Wiener systems in CPSs under
replay attacks. A data-flag fusion mechanism based on
binary stochastic flag is proposed, which retains the ad-
vantages of binary communication while significantly en-
hancing real-time resilience against attacks. A param-
eter identification method based on adding flag is de-
veloped for scenarios with unknown attack probabili-
ties. Furthermore, the limitation of 1-bit communication
is overcome by designing a data-flag fusion mechanism
and corresponding joint identification algorithm for sys-
tem parameters and attack probabilities. The asymp-
totic properties of the estimators and optimal flag config-
uration strategies are rigorously analyzed. The proposed
mechanism is also extended to multi-threshold measure-
ment scenarios, improving adaptability and generality,
while an adjustment scheme enhances robustness under
extreme conditions.

Future research directions include i) extending the pro-
posed identification framework to more complex system
models with dynamic nonlinearities or feedback struc-
tures, ii) designing joint defense strategies against multi-
ple types of attacks such as denial-of-service and tamper-
ing, and iii) exploring online identification mechanisms
under resource-constrained and distributed settings to
enhance practical deployment and performance.

Appendix A. Proof of Theorem 4.3

Since zk = ⊖1(sk) only takes 0 or 1, E{(zk −
E{zk})2} = E{z2k}− (E{zk})2 = E{zk}− (E{zk})2. Due
to the i.i.d. property of the noise, according to Central
Limit Theorem, as N → ∞,

√
N1(zN,1 − ζ1)

...√
Nh0

(zN,h0
− ζh0

)

 d→ N (0,diag(ζi − ζ2i )), (76)

where zN,i = 1
Ni

∑N
k=1 zkI{πk=τi}; Ni is given by (9).

Likewise, by the periodicity and independence of the
flag, there is limN→∞

N
LN,j

= µ, so
√
N(LN,1 − ρ1)

...
√
N(LN,µ − ρµ)

 d→ N (0,diag(µ(ρj−ρ2j ))), N → ∞.

From Lemma 4.1, (30) and (31), we have

Π−1


√
N(LN,1 − ρ1)

...
√
N(LN,µ − ρµ)


=

√
N(Λ̂N − Λ)

d→N (0,Π−1diag(µ(ρj − ρ2j ))Π
−T ), N → ∞. (77)

By (27) and (36), combined with Mean Value Theorem,
there exist intermediate values ξ∗i between ξN,i and ξi,
and ϱi between ϱN,i and Φi, such that

√
N(QN − Q)

=
√
N(£(ξN )−£(ξ))

=
√
ND(ξ∗)(ξN − ξ)

=
√
ND(ξ∗)


C −F(ϱN,1)− (C −F(Φ1))

...

C −F(ϱN,h0
)− (C −F(Φh0

))



=
√
ND(ξ∗)diag(H (ϱi))(β(Λ)


ζ1
...

ζh0

− βN (Λ̂N )


zN,1

...

zN,h0

)
=
√
ND(ξ∗)diag(H (ϱi))

{
C (Λ)− CN (Λ̂N )

+ βN (Λ̂N )


ζ1 − zN,1

...

ζh0
− zN,h0

}
, (78)
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where CN = βN (Λ̂N )ζ. C (Λ) − CN (Λ̂N ) = C (Λ) −
C (Λ̂N )+C (Λ̂N )−CN (Λ̂N ). Similarly, Mean Value The-

orem is applied to the derivatives of C (Λ) and C (Λ̂N )
with respect to Λ. AsN → ∞, we have ξ∗i → ξi, ϱi → Φi,

CN → C , and Λ̂N → Λ. Combining Lemmas 4.1 and
4.2, together with (76), (77), and (78), it follows that√
N(QN − Q)

d→ (0,Σ0). The theorem is proved. 2
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Ye, D., Zhang, T.Y., &Guo, G. (2019). Stochastic coding
detection scheme in cyber-physical systems against
replay attack. Information Sciences, 481, 432–444.

Yu, P., Hu, Y., Wang, Y., Jia, R., & Guo, J. (2025).
Optimal Consensus Control Strategy for Multi-Agent
Systems Under Cyber Attacks via a Stackelberg Game
Approach. IEEE Transactions on Automation Science
and Engineering, 22, 18875–18888.

Zhao, D., Yang, B., Li, Y., & Zhang, H. (2025). Replay
Attack Detection for Cyber-Physical Control Sys-
tems: A Dynamical Delay Estimation Method. IEEE
Transactions on Industrial Electronics, 72(1), 867–
875.

Zhu, M., & Mart́ınez, S. (2014). On the Performance
Analysis of Resilient Networked Control Systems Un-
der Replay Attacks. IEEE Transactions on Automatic
Control, 59(3), 804–808.

Zong, T., Li, J., & Lu, G. (2023). Parameter identifica-
tion of dual-rate Hammerstein-Volterra nonlinear sys-
tems by the hybrid particle swarm-gradient algorithm
based on the auxiliary model. Engineering Applica-
tions of Artificial Intelligence, 117, 105526.

18


	Introduction
	Problem formulation
	Preliminaries
	Original identification algorithms
	Algorithm analysis under replay attack
	Improved identification algorithm with known attack strategy

	Defense mechanism and algorithm design
	Sending mechanism based on adding flag
	Sending mechanism of data-flag fusion
	Algorithm performance analysis

	Several technical issues
	Extension of multi-threshold measurement
	Practical source of flag
	Handling extreme attack scenarios

	Numerical simulation
	Concluding remarks

