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Abstract

This paper investigates the problem of parameter identification for quantized Wiener systems subject to replay attacks. Such
attacks cause input-output timing misalignment, and the coupling between quantized measurements and system nonlinearities
further complicates the design of identification algorithms. We propose a data-flag fusion mechanism based on binary stochastic
flag that compensates for identification errors induced by timing misalignment by leveraging the statistical properties of the
flag. Moreover, by exploiting the structural characteristics of the system and the statistical properties of the noise, the quantized
observations and system nonlinearity are jointly formulated as a unified nonlinear equation set, whose solution enables the
joint estimation of the attack strategy and system parameters. Theoretical analysis is conducted to establish the consistency
and asymptotic normality of the estimators, and the optimal configuration of the flag parameter is formulated under the
minimum variance criterion. The generation of stochastic flag that satisfies the required statistical properties is investigated,
the proposed framework is extended to multi-threshold observations, and a robust adjustment scheme is introduced to handle
extreme attack scenarios. All theorems and conclusions are validated through numerical simulations.

Key words: Wiener systems identification; Quantized input and observation; Data-flag fusion mechanism; Replay attacks;
Cyber-physical systems.

1 Introduction Driven by the global demand for digital transformation,

CPSs are increasingly applied across both industrial

As a core enabling technology of the new wave of
industrial transformation, Cyber-Physical Systems
(CPSs) integrate information technology with the phys-
ical world through computation, communication, and
control, forming an intelligent closed-loop system char-
acterized by real-time perception, dynamic decision-
making, and precise control (Pivoto et al, 2021).
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and civilian domains, including smart manufacturing
(Mustapha, 2025), smart cities (Rakha, 2024), and wise
medical (Qu et al., 2024).

Motivation. Due to their strong reliance on com-
munication networks, CPSs face unprecedented security
risks when exposed to network unreliability and exter-
nal attacks (Li and Ye, 2025). Among others, replay
attacks, characterized by high stealth, low implemen-
tation cost, and significant disruptive potential, have
been widely recognized in both academic research and
real-world cases as a serious threat to the secure oper-
ation of CPSs (Liu et al., 2023; Mo and Sinopoli, 2009;
Porter et al., 2021). In CPSs security research, accu-
rate modeling and identification of system dynamics are
fundamental for attack detection, anomaly diagnosis,
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and performance recovery. Nonlinear Wiener systems
are commonly adopted due to their strong modeling ca-
pacity and practical interpretability. However, most ex-
isting identification methods are developed under ideal
communication assumptions and fail to account for the
impact of communication insecurity. Moreover, due to
the limited bandwidth and computational resources in
CPSs, signal quantization is unavoidable in practice.
Quantization reduces data precision and introduces ran-
domness, which further complicates the identification
problem ((ﬂio et al., 2017; Guo et al., 2012). Replay at-
tacks amplify this challenge by repeatedly injecting out-
dated data to mislead the decision makers, significantly
increasing the risk of identification failure under quan-
tized conditions. Therefore, investigating the identifica-
tion of quantized Wiener systems under replay attacks
poses not only theoretical challenges but also holds sub-
stantial engineering relevance. Motivated by these chal-
lenges, this paper investigates the identification prob-
lem of quantized Wiener systems under replay attacks.
The proposed approach aims to enhance the security
and controllability of CPSs under non-ideal communi-
cation conditions by providing both theoretical insight
and practical solutions.

Related work. As a representative block-structured
nonlinear system, Wiener systems have long been a
key focus in system identification. When the structures
are known, various parameter estimation methods have
been developed, including least squares approaches
(Nadi and Arefi, 2023), recursive algorithms (Naseri et
al., 2022; Ozbot et al., 2023), and mixed time-frequency
techniques (Shakib ot al. , 2022). For the unknown non-
linear part, modeling techmques such as Volterra series,
kernel-based methods, orthogonal basis functions, and
Gaussian process hyperparameters have been employed
to enhance model expressiveness and identiﬁcation ac-
curacy (Bai, 2008; Kang et al., 2014; Nejib et al., 2016;
Risuleo et al., 20 l‘)) With the advancement of artificial
intelligence, nonlinear dynamic models based on neural
network, such as the recurrent equilibrium network,
subspace encoders, and deep neural networks, have
been applied to Wiener system identification (B(‘inl ema
et al., 2023; Pillonetto et al., 2025; Revay et al., ‘)4)
However most existing studies assume that output sig-
nals can be precisely obtained, overlooking the impact
of communication constraints and network security.

Current research on quantized nonlinear system iden-
tification remains primarily theoretical. Zong et al.
(2023) proposed a hybrid particle swarm gradient algo-
rithm based on an auxiliary model for parameter estima-
tion in dual-rate Hammerstein systems. Li et al. (2023)
designed a parameter estimator for quantized Hammer-
stein systems using a constant filter and augmented
parameter error data. Guo et al. (2017) employed the
empirical measure method under persistency of exci-
tation conditions to estimate parameters in quantized
Wiener systems. Additionally, Cao et al. (2024) and

Li et al. (2025) developed adaptive error self-learning
estimator, respectively, for identifing quantized Wiener-
Hammerstein systems. The practical applicability and
robustness in complex scenarios are not considered.

In recent years, research on replay attacks has primar-
ily focused on detection and defense mechanisms. The
first category involves the use of additional information
such as timestamps (Farha et al.; 2022; Jia et al., 2025
Liu et al., 2024) and random numbers (Huang et al
2020), Wthh aim to reveal the essence of replay attacks
by exploiting temporal or numerical discrepancies. How-
ever, these methods typically require significant com-
munication bandwidth. The second category introduces
watermarking into control signals. This widely adopted
defense mechanism can mitigate the impact of replay
attacks but often degrades system performance (l"an0
et al., 2020; Fritz and Zhang, 2023; Liu et al., 2023,7;
Mo and Sinopoli7 2009; Porter et al., 2021; Zliu and
Martinez, 2014). The third category focuses on com-
munication data design, aiming to enhance attack de-
tection accuracy without compromising system perfor-
mance. This includes encoding strategies (Song and Ye,
2023; Ye et al., 2019), data reconstruction (Ferrari and
Teixeira, 2()21 Li et al., 2023), or sending preset data
(Guo et al ))’) with unified attack inference at the
receiver s1de Other approaches include leveraging cryp-
tographic techniques (Rasheed et al., 2024; Yu et al.,
2025), and using delay-based communication strategies
(Zhao et al., 2025). In contrast, research on system iden-
tification under network attacks remains relatively lim-
ited. As system identification forms the foundation for
state estimation and controller design, it is imperative
to further investigate the security of system identifica-
tion under replay attacks.

Compared with denial-of-service attacks and false data
injection attacks, replay attacks are not well investi-
gated in terms of both estimation and control. In-depth
research on replay attacks during system identification
remains notably insufficient. Existing methods (Guo et
al., 2025), which follow the anomaly detection designed
for data tampering, fail to effectively address the core
challenge of the temporal misalignment and often suffer
from slow convergence. Furthermore, the replay attack
strategy model, a high-dimensional probabilistic distri-
bution vector, becomes extremely complex when coupled
with system nonlinearities and quantization effects, cre-
ating an urgent need for a dedicated theoretical and al-
gorithmic framework. An in-depth exploration precisely
targeting the aforementioned gap and challenges is con-
ducted in this paper.

Contributions. This paper focuses on the problem of
parameter identification for quantized Wiener systems
under replay attacks. To address the challenges arising
from time misalignment caused by such attacks, as well
as the coupling between quantized observations and sys-
tem nonlinearities, a data-flag fusion transmission mech-



anism based on binary stochastic flag is proposed. By
exploiting the statistical properties of the flag, the mech-
anism compensates for the estimation errors induced by
time misalignment. Furthermore, by incorporating the
structural characteristics of the system and the distribu-
tion of the noise, the quantized observations and system
nonlinearities are formulated into a nonlinear equation
set, whose solution enables the joint estimation of sys-
tem parameters and the attack strategy. Moreover, the
strong consistency and asymptotic normality of the esti-
mators are theoretically analyzed, and an optimization
problem for the design of flag parameters is formulated.
A flag generation is developed to ensure the required sta-
tistical properties, and the proposed mechanism is ex-
tended to multi-threshold observation scenarios to en-
hance the adaptability. In addition, a robust counter-
measure is designed to improve the algorithm’s stability
under extreme attack scenarios.

An algorithm framework based on system struc-
ture and intermediate variable estimation has been
constructed to address the complex nonlinear cou-
pling challenges arising from the transition from peri-
odic input-linear systems to quantized input-nonlinear
Wiener systems. The conditions for system identifiabil-
ity under input excitation and parameter solvability are
presented. Convergence of the algorithm against replay
attacks is maintained. The proposed fusion mechanism
ensures that all transmitted data simultaneously car-
ries both system information and security information,
thereby fully preserving the original input excitation
characteristics of the design. The main innovations and
contributions of this paper are summarized as follows.

e This paper addresses the problem of parameter iden-
tification for quantized nonlinear Wiener systems un-
der replay attacks. In contrast to existing studies that
focus on i) identification without attacks (Cao et al.,
2024; Guo et al., 2017; Liet al., 2023, 2025; Zong et al.,
2023), ii) non-quantized information studies (Fang et
al., 2020; Fritz and Zhang, 2023; Liu et al., 2023; Zhu
and Martinez, 2014), and iii) linear system identifica-
tion (Guo et al., 2025), this work provides a systematic
investigation into the identification of nonlinear sys-
tems under the combined effects of quantization and
replay attacks.

e Compared with preset data schemes (Guo et al., 2025)
and conventional timestamp and random number-
based methods (Farha et al., 2022; Huang et al.,
2020; Liu et al., 2024), this paper proposes a data-
flag fusion mechanism based on binary stochastic flag
with real-time and stochastic characteristics. This
effectively overcomes the predictability and commu-
nication overhead issues of existing methods, and
preserves both identification accuracy and the ad-
vantage of binary communication, while ensuring the
robustness against replay attacks.

e The proposed mechanism and identification algorithm
enable joint consistent estimation of both attack prob-

abilities and system parameters. Theoretical proper-
ties of the estimators are analyzed, and an optimal
configuration for the flag parameters is developed. A
flag generation satisfying the required statistical prop-
erties is constructed, the mechanism is extended to
multi-threshold quantization scenarios, and a robust
adjustment scheme is proposed to handle extreme at-
tack conditions.

Organization. The remainder of this paper is orga-
nized as follows. Section 2 introduces the identification
framework for quantized Wiener systems under replay
attacks. Section 3 analyzes the performance of the orig-
inal and improved identification algorithm under replay
attacks. Section 4 develops the defense mechanism and
algorithm and analyzes their performance. Section 5 dis-
cusses several relevant technical issues. Section 6 pro-
vides numerical simulation results. Section 7 concludes
this paper and outlines future research directions.

2 Problem formulation

In this work, we consider a Single-Input Single-Output
(SISO) discrete-time Wiener system, where the linear
dynamic component is a FIR system of order ni, and
the static nonlinear component consists of ny nonlinear
basis functions. The system is described as follows.

{ Yo = i Mifi(er) +wp, )
x = Orug + Oaup—1 + - + Ony Uk—n, 41,

where 79, fo(-) = 1, eliminating scale ambiguity caused
by all free parameters ensures that the mapping from
input-output data to system parameter combinations is
unique; wy denotes the system noise satisfying Assump-
tion 2.1 below; uy, is the quantized input; xj serves as an
intermediate variable; y is the system output. The pa-
rameters to be identified are defined as @ = [01,...,0,,]7
and = [n1,...,Mn,]T for the linear and nonlinear com-
ponent, respectively. The superscript 7 indicates vec-
tor or matrix transposition. The binary-valued measure-
ment output sg is generated through the indicator func-
tion.

82 = Huezoy = { 0, others @)

where C' denotes the threshold of the binary sensor. As
illustrated in Fig. 1, 82 is transmitted over an unsecured
communication network to a remote data center, where
the received data at time k is denoted as sy,.

Assumption 2.1 The noise {wy} is composed of inde-
pendent and identically distributed (i.i.d.) Gaussian ran-
dom wvariables with zero mean and variance o2. Its cu-
mulative distribution function is denoted by ®(-).
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Fig. 1. System architecture diagram

Remark 2.1 The noise can be relared to a ¢-mixing
process. For the unknown variance, it can be estimated by
treating it as an unknown parameter (Wang et al., 2010).

Building upon the fundamental replay attack model
Sk = 82_5 (Liet al., 2023; Mo and Sinopoli, 2009; Zhao et,
al., 2025), the replay delay or intensity d is often bounded
by a realistic upper limit. Given the established data as-
sociation between sender and receiver in the communi-
cation network, the relationship between s; and s at
time k is formulated as follows.

Sk = Sg—éka (3)
Pr{sc =s)_s5.} = As,, (4)
0, € U={0,1,...,u}, (5)

where Jj is a discrete integer-valued random variable
representing the replay intensity at time k. J; # 0 im-
plies that a replay attack has been launched. p defines
the upper bound on ;. Denote A = [Ag, A1, ..., AT
as the probability vector of dg, satisfying 1A =
[1,1,...,1]A = 1. The above random replay attack
strategy can thus be compactly characterized by the
tuple (u,A), determined by its intensity bound and
probability vector.

To counter replay attacks, defenders must design ef-
fective countermeasures and develop consistent identi-
fication algorithms based on the available information,
including uy, the threshold, the noise distribution, and
the received data si. The consistent goal is to ensure
that, as the sample size tends to infinity, the estimates
of the system parameters 17 and 6 strongly converge to
their true values. In what follows, we first analyze the
performance of the identification algorithm under replay
attacks. Then, we propose a defense mechanism to mit-
igate the impact of such attacks. Finally, we discuss ex-
tensions of the proposed mechanism.

3 Preliminaries
3.1 Original identification algorithms

Assume that the quantized input u; can take a distinct
values, i.e., uy € {r1,re, -+ ,7rq}. Define the input re-
gression pattern as 7 = [ug, Uk—1, . -« , Uk—n,+1], Which

has h = a™* possible values, denoted by

T = [lerla"' arrl]lxnu
T2 = [7’1,7"1,"‘ 7T2]1Xn17

(6)
Th = [Tmraa"' 7Ta]lxwzl-

Assumption 3.1 Persistent excitation condition. The
input regression pattern mi satisfies the persistent exci-
tation requirement if there exists a strictly positive prob-

N
Do L=y [ —
N ’ -

1,2,...,h. Without loss of generality, assume that the
set of persistently exciting patterns corresponds to in-
dicest € H ={1,2,...,ho}, where ny + ny < hg < h,
ensuring the identifiability of the system.

ability measure such that p; = lim
N—o0

Remark 3.1 The persistent excitation condition ex-
tends the classical full-rank requirement to quantized
inpus by ensuring all regression patterns occur with pos-
itive probability. This probabilistic formulation directly
guarantees the non-singularity of the information matrix
through the full column rank of Qy,, .

Let T = [[y,...,T,]7 denote a full-rank matrix com-
posed of n; input regression patterns, where each I'; €
{rj}fori=1,...,n; and j € H. The set {I'y,..., Ty, }
is referred to as the basic persistently exciting pattern
set. Define T =T'0. Set X1, X5,..., X, ben =n1 +no
unknown variables. Denote X; = [X1,..., X,,]|T, &> =

[Xnyt1,---,Xn]T. Consider the following equation set
with X() =1.
& Yoo Xifi(mD 1 Xy)
_ & doi2o Xifi(mal ™' Ay)
E=| =" . (7)
Ehy oo Xifi(mh T ™1 As)

Assumption 3.2 There exists a compact set © C R0,
such that & is an interior point of ©, where

&1 > i fi(mID~1T)
¢ = 5:2 _ iz nifi'(7'2r_1T) ®)
&ho SoiZonifi(mn, DY)

For V¢ € O, (7) admits a_unique solution, denoted by
(X0, X7 = £(6), and £(€) is bounded and continuous
at €.

For convenience, we denote the solution in Assumption

3.2as X = £1(€), Xa = £3(§). Consider the system (1)



with binary measurements (2). In the absence of replay
attacks, under Assumptions 2.1, 3.1, and 3.2, the iden-
tification algorithm defined by (9)-(11) yields consistent
estimates of the system parameters n and 6.

N
1
VN,chff(ﬁzskl{ﬂ'k:n})a (9)
Y k=1
~T AT T
% TE] = £0w), (10)
é\N:F_l’/f\Na (11)

where vy = vy, ..., Z/N,hO]T; F(-) denotes the inverse
function of ®(-); N, = Zszl Iir,—r,y with E?il N, =
N, 1 € H; 7jn is the estimate of the nonlinear parame-

ter n, and Ty is the prediction for Y; 51\; denotes the
estimate of the linear parameter 6.

A brief proof is provided for the design and analy-
sis of subsequent algorithms. From (1), there is y =

Sizonifi(me) + wi = Y20 nifi(el'Y) + wy. The
probability of event s = 1 in the absence of an attack is

E{sg}=Pr{sp =1}
=Pr {wk <C- ZUz’fi(TkFlT)}

i=0

=o(C = mifi(nI ')
I (12)

where E{-} represents mathematic expectation. Due to
7k € {71, .., Thy }, We have

E{Sk} S {E{Skl{ﬂ,k:n}}, e 7E{sk]{ﬂ'k:7'h0}}}' (13)

From Law of Large Numbers, for each pattern 7,,

N

1

N Zskf{ﬂ.k:n} — ®,, wp.l, as N — oo. (14)
b k=1

Combining with (9), we obtain

ng
UN, — mei(nl"*l'f) =¢,w.p.l, as N - oo. (15)
i=0

]§y (7), (8) and (10), Ny = £1(vy) = n = £1(€) and
Ty = Lavny) = T =T0 = £5(€), wp.1l, as N — oo,
which yields that Oy =T 1Ty — T7IT = 0.

Remark 3.2 Assumption 2.1 is the standard condition
for ensuring the asymptotic normality of the estimator.
Assumption 3.1 ensures that the input signal can contin-
uously and sufficiently excite all dynamic modes of the

system. Assumption 3.2 is the core model-related condi-
tion guaranteeing global structural identifiability.

Remark 3.3 The algorithm (10) and (11) transforms
the complex nonlinear and quantized coupling identifica-
tion problem into a clear and theoretically verifiable two-
stage process by introducing an intermediate variable.

3.2 Algorithm analysis under replay attack

Lemma 3.1 (Hall and Heyde, 19580) Consider a mar-
tingale difference sequence {Xyp, P, k > 1} If

2
]EQ{Z,ivzl Xr} < oo and Zgzl % < oo, then
%Zszl Xr — 0, w.p.1, as N = co.

Assumption 3.3 Let F be a o-algebra. The quantized
input sequence {uy} is assumed to be an i.i.d. stochastic
Process. Furthermore, uy is measurable with respect to
Fr—1 = o{w;, d;,1 < k—1}, and satisfies |E{ux}| < oo.

Remark 3.4 Assumption 3.3 differs from most studies
on deterministic inputs. This ensures the convergence
of identification algorithms under replay attacks, with
martingale difference theory serving as proof tools.

Due to the replay nature of the attack, the condi-
tional probability relationships between regression pat-
terns play a key role in analyzing the algorithm’s perfor-
mance. Define the matrix ¥° € RP0*0 whose element

f,j =Pr{m,_s = wi|my = w,}, 1,j € Hand § € U. This
matrix characterizes the influence of the replayed input
pattern (delayed by ¢ steps) on the current pattern. It
satisfies the following properties. (i) Each column of W%

sums to 1. 2?21 ¢, =1; (ii) For § = 0, the matrix re-
duces to the identity W = I, where I;, denotes the
ho-dimensional identity matrix; (iii) Specifically, 2 ;is
the Kronecker delta, i.e., ¢?ﬂ. =1, @[Jgj =0 for i # j.

Theorem 3.1 Consider system (1) and the binary mea-
surement (2). Suppose the system is subjected to a ran-
dom replay attack (u, A). Under Assumptions 2.1, 3.1,
3.2, and 3.3, the parameter estimates generated by the
identification algorithm (9)-(11) are convergent. How-
ever, the estimates do not converge to the true parame-
ters m and 0. Specifically, we have

iiv — £1(0), (16)

On — T~ £5(0), (17)

C=[C—F(G),....C = F(Guy)", (18)
© ho

G=D N ui®, icH. (19)
5=0 j=1

Proof. In the presence of the attack, from Assumption
3.3, ug is Fi_1-measurable. Considering the regression



property of the pattern 7, and using (3), (4), (5), and
(12), we obtain

]E{Sk|fk_1}
=Pr{s, =1}

o
=) Pr{sy=s)_s}Pr{sh_s=1}

I
>
(1=
(=)

ho
Pr{s, =s)_s} ZPr{kaé =7;}9;
j=1

3=0
W ho
=Y Pr{sp=s) 5} > Pri{ms=r7lm = 7%}®;
§=0 Jj=1
Iz ho
=3 "> vl (20)
=0  j=1

From (13), E{si|Zk-1} € {E{Skf{ﬂ.k:ﬁ”yk,l}, RN
E{Skl{wk:‘rhoﬂy/@*l}}' Let vy = (s — C’C)I{ﬂ‘k:‘l’i}'
Then, by E{sp|#_1} = Cx, we have E{vg|F_1} = 0,
implying that {vx} is a martingale difference se-
quence. Since v, € (—1,1), ]EQ{Z,I:[:l v} < oo and
2

fal} ]E{;zk} < >3, & < oo. Then, by Lemma 3.1,
%Zﬁ;l(sk = ) {zp=r;y — 0, as N — oo. This im-
plies that as N — oo,

1 N
N Zskl{ﬂk:‘ri}
! k=1

1

N;

M=

(8k = CeM {mp=riy + G = G- (21)

ES
Il
=

Combining with (9)-(11), the theorem is proved. O

Remark 3.5 In this paper, replay attacks target the
measurement data transmission process without affect-
ing the input signal. Therefore, the persistent excitation
condition remains valid.

3.3 Improved identification algorithm with known at-
tack strategy

Algorithms in (16)-(17) shows that although the orig-
inal algorithm retains convergence under attack, it is in-
herently biased and cannot recover the true parameters
without additional improving or attack detection mech-
anisms. We assume that the attack strategy is known,
and propose an improved identification algorithm by
constructing an attack matrix to achieve consistent pa-
rameter estimation despite the presence of attacks.

§ Zf:ll I{Mﬂs:ﬂ}j{”k:ﬁ
Let 1/)N7i,j = fEN . :
k=1 1Tk=Tj

pirical frequency that, given m, = 7, the delayed in-
put pattern m,_s = 7; occurs, based on N data sam-

' denote the em-

ples. The matrix ¥%;, composed of elements @[J?V,i, j» cor-

responds to the theoretical matrix 9. Using this, we
construct the hg x hg-dimension empirical attack strat-
egy matrix Qn(p, A) = S8 A (V)T Let Bn(p, A) =
Q' (11, A) denote the inverse of this matrix, with ele-
ments By, (1, A), i, € H. Then, by incorporating
Bn,i,j (1, A), we improve the original algorithm (9)-(11)
and propose the compensation-based identification al-
gorithm as follows, which is capable of achieving consis-
tency.

v = £1(6n), (22)
Oy =T £25(Cn), (23)
En=1[C—Flsni)-.,C — Flonn)" (24)

ho N
1 .
SN = ; B i (1 A)ﬁ] kz::l Sklim=7,3, 1 €H.  (25)

Theorem 3.2 Under the condition of Theorem 3.1,
for a known attack strategy (p, A), if the inverse matrix
B, A) of Q(u, A) exists, then the parameter estimate
provided by the identification algorithm (22)-(25) is con-

sistent, i.e., Iy — 0 and O — 0, w.p.1, as N — oco.

Proof. According to the statistical properties, E{w?\,’i’j} =

f}j. From Law of Large Numbers, \Ilf\, — ¥’ as N —
oo. Likewise,

() = 3" A (89)T 2 (p, ),
6=0

Under replay attacks, from (19) and (21), it follows that
as N — oo,

 net Skl (m=r) ! @,
: =1 | =)

1 N
Nog 2ok=1 Skl {m=7,) Cho P,

By the above, (25), and (26), as N — oo, we have

N1 o DRI P
= Bn(u,A) :
SN.ho Mo MRS T
31 31
=B, M), A) | = |- (27)
Dy, Dy,

Finally, from (10), (11), (14), and (15), the consistency
of the estimator follows, completing the proof. O



The execution of the compensation-based identifica-
tion algorithm depends heavily on the non-singularity
of Qn(u, A). This problem is also equivalent to the non-
singularity of Q(u, A). We give the following theorem.

Theorem 3.3 Assuming that the regression pattern is
connected and irreducible, the matriz Q(u, A) is singular
if and only if A\g = 0.

Proof. Given that the regression pattern is connected
and irreducible, for any i,5 € H and 6 > 1, 1/)?371 =
> 1w U2t 5, which implies WOH! = WOl = ()5t

At § = ny, we have 1/}1"; = Pr{mp_n, = wilm =
w;} = Pr{m};&ifﬁ;’f’;:% ) This can be decomposed
7
as a product of input probabilities Pr{ug_,, =
Theny 1} Pr{Uk—on,41 = Thonyn, - Similarly, at
6=n1+1,
wz;—l—l = PI’{ﬂ'k,nlfl = W;|T = wj}

= Pr{uk—n,—1 = Th—n 1,1}
U Pr{uk—2n1 = Tk—n1—1,m }I{uk—n,le{'rl"" Tat}:

Let ¢; denote an eigenvalue of W'. Then, /7 and ¢+
are eigenvalues of W™ and W™+l respectively. Since
U™ = UMF e have £ = £t implying ¢; is 0
or 1. Given that the matrix order hg > ny, there exists
exactly one eigenvalue equal to 1 and the remaining hg —
1 eigenvalues are 0. From Q7 (u,A) = S5 As0° =
Aolng + AL+ -+ X, U4, it follows that [Q(u, A)| =
QT (, A)| = 1-Xg- -+ Ao = (Ag)o~L. Therefore, Q(u, A)
~——

ho—1
is singular if and only if Ay = 0. O

In the case of extreme conditions Ay = 0, a transmis-
sion side adjustment scheme has been developed to en-
sure the feasibility of the identification algorithm. See
Subsection 5.3 for details.

4 Defense mechanism and algorithm design

To achieve consistent parameter estimation, this sec-
tion introduces a defense mechanism against replay at-
tacks by a binary stochastic flag generator and prepro-
cessing the transmitted data at the transmission-side.

Defense o A
O [ |
y B

Data center

Fig. 2. Defense module diagram

As illustrated in Fig. 2, the proposed defense mech-
anism inserts a defense module before data transmis-
sion to process the original observation sg. Two distinct
processing strategies are adopted. The adding-based ap-
proach, which generates Dy, is detailed in Subsection 4.1;
The fusion-based approach, which generates S,S, is pre-
sented in Subsection 4.2. Then, the processed data are
transmitted to the data center for subsequent identifica-
tion.

4.1 Sending mechanism based on adding flag

Under the adding-based approach, the attacker targets
Dy, such that

{ Sp = Di_s,, (28)
PI‘{Sk = Dk—ék} = /\5k,

where § € U. Dy is constructed by concatenating a bi-
nary flag T,g with the raw sensor measurement s% ie.,
Dy = T @ s) = TP|s%. At the data center, a separa-
tion operation is performed to recover the attacked flag
Ty and sensor data zg, denoted by Sg(sx) = Tk and
©1(sk) = 2, respectively. Accordingly, T, = Ty _5 and

— <0
ZE = Sk75k.

To estimate attack strategies, the amount of informa-
tion carried by the defense design must be no less than
the maximum offset p plus one that an actual attack
could potentially cause. This is sufficient to uniquely dis-
tinguish every possible timing misalignment pattern re-
sulting from an attack (i.e., from no attack to the max-
imum delay of u steps, totaling u + 1 states). To sim-
plify the analysis of the problem, we define @t = p + 1.
In what follows, our goal is to estimate the attack prob-
ability A. In practice, even when p is completely un-
known, we can select sufficiently large @ such that the
designed mechanism still achieves consistent estimation,
as demonstrated in the simulation results of Figs. 11 and
12.

A binary flag sequence is defined as a stochastic se-
quence with specific statistical properties that is actively
generated by the sender and injected into measurement
data. Its core function is to serve as a covert timing car-
rier, enabling the receiver to detect and compensate for
timing inaccuracies caused by replay attacks within the
data. The design of the flag sequence {T,S } satisfies the
following statistical properties. (i) Periodicity. The se-
quence follows a periodic stochastic structure with pe-
riod f; (ii) Binary stochastic feature. Within each pe-
riod, the flag at position j is generated independently
as a Bernoulli trial with parameter G; € [0,1], i.e.,
Pr{Ty = 1} = Gy; (iii) Independence. Flag generation
is statistically independent across positions within each
period, and across periods for the same position. It is
also independent for s¥.



These pre-designed statistical properties are the core
enabling the defense mechanism. The designed identi-
fication algorithm, by comparing and utilizing changes
in these statistical properties, constructs the estimation
equations, thereby enabling the simultaneous resolution
of both the attack strategy and the system parameters.
According to the nature of the flag and replay attack,
we establish the following linear equation set with linear
constraints 0 < Ag, A1,..., A, <1land 1A =1.

5o XGrs = p1(p, A)
YK o AeGas = pa(p, A)

(29)
s=0 2G5 = pa(, A)
We can rewrite (29) as
- A =[p1,p2,....05" = p. (30)

IT is a right circulant matrix with the first row element
G1,Gpg, ... ,Go, entirely determined by preset values.
Guo et al. (2025) provided a sufficient but not necessary
condition for the invertibility of II, that is, 7z is a prime
number and G; # G with ¢ # j.

Remark 4.1 Tagging/Labeling typically refers to meta-
data used to classify, identify, or authenticate data con-
tent or sources. Indicators are metrics reflecting faults
or attacks. Watermarks are employed for attack detec-
tion purposes. The flag draws inspiration from the active
watermark injection to restore temporal information.

Based on the sending mechanism based on adding flag,
and the “principle of necessary equivalence”, the identi-
fication algorithm is designed as follows.

Av=I"'Ly, (31)
| X
L= Ins ZTkl{mod(l@fl,ﬁ)+1:j}a Jeu, (32)
7 k=1
v =[2n1,- . 2nn,]", (33)
0]\[=F71[2N7n2+1,...,e@N7n]T, (34)
DN = L(EN), (35)
Env=1[C—Flona),---,C = Flonn)" (36)
ho =N 1 N
ONi = Z ﬂN,i,L(AN)ﬁ Z 2l {rp=ry, €M,  (37)
=1 b k=1
where ./A\N is the estimate for A; Ly = [Ln1,..., LnzalTs

N . .
Ly =3 -1 Ifmod(k—1m)+1=;}; mod(ay, az) is remain-
der function, representing the remainder of a; divided

by a2;u:{1a-~-7ﬁ}'

Remark 4.2 The sender and receiver must reach con-
sensus on the period and generation parameter G; (not
the specific flag data), as well as the fusion rules, before
initiating communication.

Theorem 4.1 Under the condition of Theorem 3.1, for
the unknown attack probability A, based on the sending
mechanism of adding flag, the identification glgom'thm
defined by (31)-(37) is consistent and yields Ay — A,

~

v —mn, and Oy — 6, w.p.1, as N — co.
Proof. According to (28), we have

]E{Tk} =Pr {Tk = 1}0 o
=Pr{Ty = Tp_s,, Ti—s, = 1}
o

=Y Pr{6 =6} Pr{Tf ; =1}
6=0

m
= Z AsGr—s
5=0
£ p. (38)

Due to the periodic nature of {TP}, it follows that
E{TiItmod(k—1m)+1=j3} = E{Tj} = p;. By Law of
Large Numbers, Ly; — E{Til{mod(k—1,m)+1=j}} =

~

pj,w.p.1, as N — co. Hence, there is Ay = II7'Ly —
II'p = A, w.p.1, as N — oo. The theorem is proved
from the proof of Theorem 3.2. O

Traditional timestamps or random numbers-based
mechanisms contain rich information (specific time val-
ues or numerical values), requiring high communication
bandwidth and resolution for transmission and verifica-
tion. The adding flag mechanism occupies only 1 bit of
bandwidth and does not require complex data parsing.
Although this mechanism has seen improvements in
bandwidth aspects, it still incurs a certain communica-
tion cost.

4.2 Sending mechanism of data-flag fusion

To address bandwidth burden, we design a data-flag
fusion mechanism. At time k, the sensor data and the
flag to be transmitted are fused into a new data S,
which occupies only 1 bit. This design ensures compat-
ibility with the data format of binary communication
networks, thereby preserving communication efficiency
and the benefits of binary signaling. As illustrated in
Fig. 2, the defense module generates the fused data Sg
through the fusion-based approach, defined by the rule

0 _ 70 _
1,8, =T,=1,

39
0, others. (39)

Sl(c) = I{sg-Tg:u = {

Under random replay attacks, the data received by the
data center at time k& becomes s = ngak, similar to



the form in (28). When s;, = 1, both T_; = 1 and
sg_ék = 1 must hold.

h

Yo XG>, 2 0P, =211
h

ZSLO AsGas 2;1 ¢f,1‘I’L = 21,2

S XG0 W0 @, =g
=0 1 1 ,1 . 23 (40)

DI ENPLICIEND DA

= Zij

25 0)‘5Gu §ZL 11/JL ho = Zho,m

For hg + @ unknown variables ®; and A5, § € U, € H,
j € U, we establish the equation set in (40). Under the
condition that the equation has a solution, the procedure
for computing the solution is given as follows.

Step 1. Expand the equation set with respect to sub-
script j, resulting in a vector equation for each j
S o AsGi_s(¥)T® = 2, where z; = [21,5, ..., 2o 5] s
O =[Py,..., P57

Step 2. Left-multiply both sides of the above equation
by ((¥1)7)™, yielding >25_ AsGj—s((¥1)")™ (¥°)"® =
((@1)T)™1 z;. By the result of Theorem 3.3, this can be
simplified to > 5_ AsGj_s((TH)T)m & = ((TH)T)m 2.

Step 3. Let > §_,
((EHT)Mz/((B)T)™M 21 £ kg, oy D5 AeGrms =

Ty /(DT 2y £ k7, where X5/ X denotes
(( i i

the norm ratio of two vectors, i.e., Hﬁf” According to
(30), we obtain [1, K, ..., kz|T = kp.
Step 4. Output the solution.
|1 i TP
A= R 41
]lel[lil,...,ﬂﬁ]T, ( )
1 "o
= Z D MG (B0)T) ey (42)
j=1 §=0

Denote the solution to the equation set (40) obtained
via Steps 1-4 as (®,A) = Z([z;;]), where [z; ;] repre-
sents the column vector obtained by arranging (i,7) =
(1? 1)7 (17 2)) cee (hOaﬁ)

The identification algorithm (43)-(48) comprises three
components. First, both communication parties must
pre-share the flag bit generation rules and fusion rules.
Second, the receiver calculates empirical frequencies at

/\5G1_5 = K1 = 1. Then, ZSL:O )\5G2_5 =

different positions based on the received data, utilizing
the flag bit index and input regressions. Third, based on
(40), the attack strategy and system parameter estima-
tion are computed according to Steps 1-4.

N
1
WN,i,j*Ni E Skl {my=riy Lmod(k—1,7)+1=5}> (43)
J k=1

(oo, Rov) = E([en.i50) (44)
Ay =Xy, (45)

v =£1(wn), (46)

On =T £5(wy), (47)
=[C—F(enn),. -, C— Floennl’, (48)

’ N .
where N;; = > 31 Iiz—r} [mod(k—1,0)+1=35}; © € H;
jEeU.

Theorem 4.2 With the condition of Theorem 3.1, for
the unknown A, using the data-flag fusion mechanism
(39) and the identification algorithm (43)-(48), the esti-
mates are consistent.

Proof. By (20), (38), and (39), it follows that
]E{Skltgkfl} =Pr {Sk = 1}
o

= ZPr {sp = 8,875} Pr {8275 =1}
—Z)\(SPT{Tk 5= 1}PI‘{S;€ 5= 1}

u
= Z AsGr—s Z ¢ik‘1%
6=0 =1
£ R k- (49)

h .
Bij =55 0 NGios D2 d)ii@p Since g, € {71, ., Tho s
and the flag sequence is periodically generated, it follows

that the process (sx — Mk k) {r, =i} fmod(k—1,1)+1=51
constitutes a martingale difference sequence. Hence,

on,ij — g, wp.l, as N — oo. (50)

According to (40), replace z; ; with 7, ;. Since II is in-
vertible, combining (30), we have II"![kq,..., k77T
kKII7'p = kKA. As 1A = 1, it holds that A =

I [k, mg] T

m Therefore, we obtain (®,A) = =([A; ;]).
From (50), we get

(en, Riv) = E([en,ig]) = (2, A) = E([hi5]),

w.p.1, as N — oo. (51)

Furthermore, from (9), (15), and (48), we have wy —
¢, wp.l, as N — oo. Finally, by (10) and (11), the
theorem is proved. O



Remark 4.3 The fusion mechanism can be applied al-
most directly to the Hammerstein system with a similar
block structure. The primary modification lies in the uni-
fied nonlinear equation system (8).

4.8 Algorithm performance analysis

Lemma 4.1 (Kay, 1993) Let X, ~ N(ux,2x) be a k-
dimensional Gaussian random vector. Then, for any ma-
triz A € R™*F and B € R™, the affine transformation

Lemma 4.2 (Chow and Teicher, 1997) Let { Xy}, {Yx },
{Z1}, and {W}} be sequences of random variables. Sup-
pose X, % X, Ve 2V, Z, B m, and Wi, B n,
where m and n are finite constants. Then, it follows that
WiXe +Yi+Ze 30X +Y +m, k — oo, where %
denotes convergence in distribution and = denotes con-
vergence in probability.

Let diag(X;) be the diagonal matrix obtained by ar-
ranging the elements X; on the main diagonal in order
of subscript i. Denote ¢ = [C1,...,Ch)T, € = B(A)C,

(&) = [£9(€),... £, (52)

where £§i(§) _ 8%5(6) _ [8,&(5),“. 3£i(§)]T, ic H.

061 > O€hng
Similarly,
Z (M) =[] (A),.... E (W), (53)
J(h)=[E{(R), ..., Ef,m (W] (54)

The asymptotic normality of the algorithm (31)-(37) is
as follows.

Theorem 4.3 Under the condition of Theorem 4.1, if
the partial derivatives of £ with respect to £ exist, then as
N — oo, the estimate 2y given by (31)-(37) is asymp-
totically normal.
VN(2y - 2) 5 (0,%0), (55)
where 2 = [T, XT)T = £(€); & is given by (8);
So = RZ (M diag(f(p; — p2))(RZ (AI1)T +
e .

RBdiag(“2)(RA)T; R = 2(¢)diag(A#(®,)); P(§)
and Z (A) are given by (52) and (53), respectively;
G and p; are defined in (19) and (38), respectively;
H() = ﬁ denotes the reciprocal of the derivative
of ®(+), that is, the reciprocal of the noise probability
density function; p; = limy_s o %,Z eH, jel.

Proof. See Appendix A for details.
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Theorem 4.4 Under the condition of Theorem 4.2, if
the partial derivative % exists, then as N — oo, the esti-
mate xy = [s%,RL]T obtained from (43)-(44) satisfies
the following asymptotic normality.

VN(xx = x) % (0,21), (56)

where x = [®T,AT)T; ¥, = J(h)STT(h); )

diag(mp,;f?); J(h) is given in (54); pi j = limn o0 NK[,]' ;
h = [h1717h172,...,hi7j,...’hh07ﬁ]T7. L = (17]) _
(17 1)7 (]—7 2)7 sy (h(hﬁ)-

Proof. From (49) and (50), we get E{(sx — E{sx})?} =
hij — hfj Again, by (43), Central Limit Theorem, the

independence of the noise and flag, and limy_, o % =

Dij, as N — 0o, we have

N Y _

\/;\/E(w,l,l hig)
R

N Vo708 10 75— i 7)

By (51) and Mean Value Theorem, there exists @, ; be-
tween h; ; and ¢n; ; such that

4 N(0,5,). (57)

Xy —x=J@)(en = h), (58)

where N = [ON1,1, PN1,25 -+ s PNisjs - s PN hosi] 5 P
corresponds to ¢ and . With N — oo, there are p; ; —
I; ; such that according to (57), (58) and Lemma 4.1,
(56) holds. 0

According to (56), the covariance matrix

hij(G) — hi j(G)?

Di,j

21(G) = J(G)diag( )THG)  (59)

is highly dependent on the identification parameters G =
[G1,Ga,...,Gx|". Therefore, by adjusting G, the esti-
mation error can be minimized. Furthermore, from (30)
and (41), it can be observed that when estimating A
via II(G) ™' p, a large condition number of II(G) (when
it is nearly singular) leads to numerical instability. In
such cases, small perturbations in p may be significantly
amplified during inversion, resulting in substantial esti-
mation bias for A. Therefore, it is necessary to explic-
itly constrain the condition number of II(G), defined

Omax G
as cond(II(G)) = 70'min((11:11(((;))))’

note the largest and smallest singular values of II(G), re-
spectively. Based on the above, we formulate the follow-
ing constrained optimization problem for the estimates,
aiming to minimize the trace of the covariance matrix

where op.x and oy, de-



TR(S(G)).

min _TR(X1(G)) (60)
G=[G1,Gs,....G5]T€[0,1]F
s.t. cond(II(G)) < condy, (61)

where cond is a predefined threshold, typically set to a
small value (e.g., condy = 10) to ensure the numerical
stability.

Due to the non-convexity of both the objective func-
tion and the constraint, obtaining the global optimum in
closed form is intractable. Therefore, numerical methods
are required to solve the problem. Two common strate-
gies are as follows. (I). Grid search. Since G; € [0,1],
the interval can be uniformly discretized with step size
A; € (0,1). The resulting Cartesian product forms a fi-
nite search space over which the optimal solution satis-
fying the constraint can be sought via exhaustive search
(Liu et al., 2025). (II). Convex relaxation. The non-
convex problem can be relaxed into a semidefinite pro-
gramming formulation, allowing for approximate global
optimization using convex optimization techniques (Liu
et al., 2025). A similar approach can be applied to The-
orem 4.3; for brevity, it is omitted here.

Remark 4.4 In addition to {G;}, the system input con-
figuration, quantization threshold selection, and flag pe-
riod can all serve as system-level optimization metrics.

5 Several technical issues
5.1 FExtension of multi-threshold measurement

Compared with the limited information in binary mea-
surements, multi-threshold measurements offer greater
flexibility in handling complex environments, dynamic
changes, and multi-objective requirements. Therefore, in
this subsection, we extend the data-flag fusion mecha-
nism to this scenario to enhance the adaptability.

The system structure in (1) remains unchanged. The
binary measurement is generalized to a multi-threshold
setting, where the output y; is measured through a sen-
sor with a finite number (m) of thresholds —oo = Cjy <
C1 < -+ < Cyp < Cpy1 = +00. The quantized output
59 is then given by

m—+1
0 __
sh= Y ql(c, 1 <p<Cy}s

g=1

(62)

where s € & = {e1,e9,...,6mt1}, and &; < ¢ for
i < j. The design rule for the flag remains the same as
described in Section 4. The data-flag fusion mechanism
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is extended as follows.

0 0 _
S0 _ Sk T, =1,
) =
€m+1, others.

The random replay attack strategy remains unchanged,
and the data center receives s, = 827(5,6 at time k. Upon
receiving si, the data center performs preprocessing to
obtain

(63)

§(Sk) = [Sllcvsiv'”vs;cn]» SZ :I{SkSEi}7 (64)
with ¢ = 1,2,..., m. Based on the mechanism (63) and
the preprocessing step (64), the following algorithm can

be designed.

v =£1(Zn), (65)

Oy =T £2(LN), (66)

=Wk, . . Whoxm 7 (67)

Wi = [C. = F(H), - Co— Flti )] (68)

An =B, B er1yxm T (69)

(P, Bn) =E([Vw,i 50 (70)
1 N

VNG = < Z Selim=r} L mod(k—1,7)+1=5}, (71)
%) k=1

where N” is defined in (43); i € H, j € U, and ¢ €
{1,2,....m}; T =[A,..., T satisfies 1.7 = 1, and
each 7, € [0, 1]. W§ and A, represent the ¢-th unbiased
estimate of £ and A, respectively. By choosing an ap-
propriate weighting vector 7, a minimum-variance (or
most efficient) estimate can be obtained. Therefore, £y

and A n are referred to as Quasi-convex combination es-
timators (Wang et al., 2010).

Theorem 5.1 Consider system (1) under the multi-
threshold measurement (62), subject to replay attacks
with probability A. Under Assumptions 2.1, 8.1, 3.2,
and 3.3, the proposed algorithm (65)-(71) enables the
consistent estimation.

Proof. ®(C, — Y72 mifi(el71Y)) £ ®4. From As-

7

sumption 3.3, (62), (63), and (64), we obtain

E{si|#x-1}
=Pr{s;, =1}

I
=) Pr{s,= 8275} Pr {T,?ﬂ; = l}Pr{sg <e&}

ho n2
AsGrs ¥ U1 ®(C, =Y mifi(nl ')

I
=2}
(1=
(=)

5=0 =1 i=0
Iz ho
5
=Y XsGros Y07,
5=0 =1



£ P (72)

D= S XG5 30 U@ Tt s evident that
(8% =2k i)  {rm=ri} [{mod(k—1,1)+ 1=;} forms a martingale
difference sequence, implying vy ; ; = &} ;, as N — oc,
according to Lemma 3.1. In the equation set (40), re-
placing ® with ® = [®1,...,®} ] and using (72),
we obtain (74, BY) — E(lhes) — (@A) —
=([#,]), w.p.1, as N — oo. From (7) and (68), it fol-
lows that W4, is an unbiased estimator of the -th com-
ponent of £&. Moreover, by (67), £y — &, w.p.1, as N —
oo. Finally, by (10) and (11), the theorem is proved. O

Remark 5.1 If the measurement data does not take the
m + 1-th value, then the specific data value is less than
the mazximum threshold. That is, for each threshold, the
binary indicators after comparing the measurement data
are both 1. This is equivalent to constructing m parallel
binary measurement channels, each corresponding to a
specific quantization interval. The remaining content is
identical to the binary case.

Remark 5.2 Under binary measurements, each sample
requires a finite number of index checks and accumula-
tions, with a time complezity of O(N). By pre-computing
the eigenvalue decomposition of ¥, each matriz inver-
sion only updates coefficients, resulting in an overall
complezity of O(1) for this stage. Under multi-threshold
measurement, the complexity for m statistics increases
to O(mN), while the computationally intensive matriz
polynomial inversion can be shared across m thresholds.
Thus, the total online time complezity for multi-threshold
measurement is O(mN) + O(1), where the first term
represents data traversal overhead and the second O(1)
term encapsulates all fized costs independent of N but
dependent on the system dimensions hy and m.

5.2 Practical source of flag

The flag T}, originates from a binary comparison out-
put of a gain module driven by a periodic input with
period fi. Specifically, we define
tr = BkA + ek, (73)
where e, ~ N(0,02) is an i.i.d. Gaussian variable inde-
pendent of the system noise wy; By is a periodic input
with period i, taking values in {by,..., bz} and satisfy-
ing By, = Bj_z; A is the gain coefficient; T} is obtained
by comparing t; with a threshold C, expressed as

17 i < CT;

(74)
0, others.

T = Ity <cry = {

Given the periodic sequence {By}, gain coefficient A,
distribution of e, and threshold C7p, the flag sequence
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generated by (73) and (74) exhibits the desired sta-
tistical properties (Wang et al., 2010). The parameter
G; = Pr{TY = 1} = F.(Cr — bjA), where F,(-) is the
cumulative distribution function of ej. This variable en-
sures the stochastic feature of the flag, and its effects are
already reflected in the design parameters {G,}. It does
not adversely affect the convergence of the main identi-
fication algorithm.

5.8  Handling extreme attack scenarios

As indicated by Theorem 3.3, the identification algo-
rithm (22)-(24) becomes invalid when Ao = 0. Further-
more, from (42), we see that when Ao = 0, the ma-
trix Yk o AeGy—s(¥°)7 has a zero eigenvalue, making
it non-invertible and preventing valid estimation of .
To address this extreme situation, we propose a commu-
nication adjustment scheme to ensure algorithmic feasi-
bility and stability. Specifically, we define

Zy = Sl(cJ+e = 1{52+E:T£+€:1}7 (75)

where Z, is the data transmitted from the sender to the
data center. 52 4. and T,? . denote the sensor measure-
ment and flag, respectively. € is chosen based on A such
that e = min{i € U|\; # 0}. In this case, we have

Pr {Sk = 1}
%
= Z Pr{sy =Siies) Pr{Sise—s =1}
6=0
n
= Z Pr {sk = 327(576)} Pr {8187(5*6) = 1}
6=0

p—e€ ho
= Z )\va—v Z wz),k:(bb
v=0 =1

Thus, the effective impact of the attack probability be-
comes [Ag, A1, .-y Au—e, 0, ..., 0]T. This transformation
circumvents the case A\g = 0 and ensures the robustness

of the algorithm under extreme conditions.

Remark 5.3 This strategy serves as a “disaster recov-
ery mechanism” with full-time replay attacks rendering
communication channels completely unreliable. While
this introduces additional time delays, it offers certain
potential benefits.

6 Numerical simulation

Consider a SISO discrete-time Wiener system.

2 z
Yo =14+mzk +miy + wr,
T = O1ug + Oug_1,
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Fig. 3. Convergence of algorithms (9)-(11) under replay at-
tacks

Fig. 4. Consistency of algorithms (22)-(25) with known at-
tacks
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Fig. 5. Identification effect of algorithms (31)-(37) for A

where order ny = no = 2; Unknown parameters 6 =
[01,05]7 = [—1,2]T and n = [n1,m2]" = [10,—10]7; The
quantized input uy € {—1,1}, and the regression pat-
terns 1 = [—1, 1], 2 = [-1,1], 3 = [1, —1], 4 = [1, 1]
satisfy the persistent excitation condition in Assump-
tion 3.3. The full-rank matrix is defined as T' = [r3, 74]7
The binary sensor threshold C' = 0, and the noise wy ~
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N(0,52%), satisfying Assumption 2.1. The measured data
59 is subject to random replay attacks characterized by
(1, A) during transmission to the data center. A data
sample N = 20000.

Under a replay attack strategy (i, [Ao, A1, A2, Az]T) =
(3,[0.5,0.1,0.3,0.1]7), the convergence of the algo-
E\ithms is shown in Fig. 3, where the estimates 7y and
O converge to £1(¢) and I'"1.£5((), respectively, ver-
ifying Theorem 3.1. For the known attack strategy,
parameters 7) and 6 are estimated using algorithms (22)-
(25), with results shown in Fig. 4. These results confirm
consistent estimation, in accordance with Theorem 3.2.

150
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07r b
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Fig. 7. Performance of algorithms (43)-(48) for A

For the unknown attack strategy case, set A = 1, the
input by, cycles through [0.4,2,1,4], and e, ~ N(0,22)
is an i.i.d. Gaussian variable independent of wy. Set the
threshold Cr = 3 to generate the flag TP. t = pu+1 = 4.
(I). Using the adding-based mechanism, compute
Dy = TP & s and apply algorithms (31)-(37) for joint
estimation of A and parameters 7,0, as shown in Figs.
5 and 6. The results confirm consistent estimation, val-
idating Theorem 4.1. (II). The data-flag fusion mech-
anism yields new data Sp = I{Sg':’f:l}‘ Algorithms
(43)-(48) are applied with results shown in Figs. 7 and 8,



Fig. 8. Performance of algorithms (43)-(48) for n and 6
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Fig. 9. Asymptotic performance of algorithms (43)-(48) for
estimating x in (56)

verifying Theorem 4.2. (III). To evaluate performance,
we approximate the true error TR(X;) by averaging
TR(N(xny — x)?) under 150 trajectories. For compari-
son, use optimal parameters G(*) = [1,0.63,1,1]” and
suboptimal parameters G = [0.90,0.69, 0.84,0.31]7
G® = [0.50,0.31,0.5,0.07]7, and plot the results in
Fig. 9. All cases show asymptotic convergence, with
the optimal setting yielding the lowest error. Simi-
larly, for Theorem 4.3 concerning asymptotic normality
and parameter optimization, use G(© = [0.18,1,1,1]F
and suboptimal G = [0.16,0.69,0.84,0.67]7, G® =
[0.067,0.16,0.50,0.70]” to obtain Fig. 10, which matches
theoretical predictions. The additional 1 = i+2 = p+3
is selected. According to the simulation results in Figs.
11 and 12, in the attack strategy estimation Ay, the
components corresponding to d > p converge to values
close to zero, while the other components and system
parameters are accurately estimated, consistent with
the theoretical analysis.

For the multi-threshold sensor case with m = 3
thresholds C7,C5,C3 = —2,0,5, and measurement
data & = {1,2,3,4}, generate new data S} using
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(63). To test robustness, consider an attack strategy
(1, [Mos A1, A2, A3]T) = (3,[0.4,0.1,0,0.5]7). Upon re-
ceiving si, the data center processes it using (64) and
applies algorithms (65)-(71). The results in Figs. 13 and
14 validate Theorem 5.1. Under the extreme condition
([1,, [)\0, )\1, )\2, )\3]T) = (3, [0, 03, 05, OQ]T) with )\0 = 0,
leading to € = 1, the adjustment scheme (75) is used
to transmit Zj, = Sy, ;. The data center applies algo-
rithms (43)- (48) with results shown in Figs. 15 and 16.

The estimate Ay converges to [0.3,0.5,0.2,0]7, ensur-
ing the correctness of the output (42) thus validating
the effectiveness of the adjustment scheme.
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Fig. 10. Asymptotic performance of algorithms (31)-(37) for
estimating 2 in (55)
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Fig. 11. A estimation using algorithms (43)-(48) with
m>p+1

Finally, there is a comparison and analysis of methods.
The adding-based mechanism, the two stage method
(Guo et al., 2025), and the fusion mechanism are used
for performance comparison. Set (1, [Ao, A1, A2, Az]1) =
(3,[0.5,0.1,0.3,0.1]7) and 7 = 6. System settings re-
main unchanged. (i) Communication overhead. Neither
the two stage method nor the fusion mechanism intro-
duces additional bit overhead, preserving the channel’s
data transmission efficiency. The adding-based mecha-
nism, however, requires an extra bit of overhead. (ii) Es-
timation effect. The curves depicting the estimation er-
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Fig. 12. Parameter estimations using algorithms (43)-(48)
with 7> p+1
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Fig. 13. Consistency of algorithms (65)-(71) for A with mul-
ti-threshold measurement
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Fig. 14. Consistency of algorithms (65)-(71) for n and 6 with
multi-threshold measurement

ror of attack strategies, 7, and 6 (measured by the Lo-
norm ||-|| between estimated and true values) as increas-
ing N are shown in Fig. 17. The results indicate that
compared with the two stage method, the fusion mecha-
nism exhibits lower overall error and faster convergence
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Fig. 16. Estimate effect of algorithms (43)-(48) for n and 6
using adjustment scheme

011 T
i —Two stage method
= [T - Our
I i AV
005 Ty 1
iy o =N
=« i A s N
= U ~
= VST TRl I - —~
0 L L L ! T T TR e R ey
05 1 15 2 25 3 35 4 45
10—t T 7 T 7 i 7 T i
— o
= .
[T B 4
. : Sy
z v vy N, -
& J»‘\ AR SR AN
vV ‘/":." 1 \
) R VTR G SOt Y -2
[ 05 1 15 2 25 3 35 4 45 5
Iy T T T T T T T T
_ UL |
= v
| ' vt‘ A =
05 YL oA 2 \ g
= T W AVETI ’._\ﬁ"'\
(S mv‘\ AN N A Il O
= AN \l.’.\. Vv '\ , _o
o y ~ I avae -7~ -
H A %, ~ N - e
. ‘ AL R Y7 OV AN W NS ¥
[} 05 1 15 2 25 3 35 4 45 5
N x10*

Fig. 17. Comparison results on estimation errors

speed. Previous results in Figs. 5-6 and Figs. 7-8 indicate
that the adding-based mechanism exhibits faster con-
vergence, which is attributable to increased communi-
cation overhead. (iii) To assess predictability, a window
length W; = 50 is selected, and the information entropy
of this window is computed as — log, ZZVZZI s(i)/ Wy —



0.9

Information entropy
o o
~ o«

o
=)

0.5

— © - Average of Two stage method
Average of Our

0.4 I I I I
0 5 10 15 20 25 30 35 40 45 50

Numbers

Fig. 18. Comparison results on security (information en-
tropy)

log, Z 1 (1 —s(4))/W;. As the number of windows in-
creases, the curve of information entropy changes as
shown in Fig. 18. The information entropy has con-
verged, while the proposed fusion mechanism exhibits
higher information entropy, greater uncertainty, and en-
hanced security.

7 Concluding remarks

This paper tackles the problem of parameter identi-
fication for quantized Wiener systems in CPSs under
replay attacks. A data-flag fusion mechanism based on
binary stochastic flag is proposed, which retains the ad-
vantages of binary communication while significantly en-
hancing real-time resilience against attacks. A param-
eter identification method based on adding flag is de-
veloped for scenarios with unknown attack probabili-
ties. Furthermore, the limitation of 1-bit communication
is overcome by designing a data-flag fusion mechanism
and corresponding joint identification algorithm for sys-
tem parameters and attack probabilities. The asymp-
totic properties of the estimators and optimal flag config-
uration strategies are rigorously analyzed. The proposed
mechanism is also extended to multi-threshold measure-
ment scenarios, improving adaptability and generality,
while an adjustment scheme enhances robustness under
extreme conditions.

Future research directions include i) extending the pro-
posed identification framework to more complex system
models with dynamic nonlinearities or feedback struc-
tures, ii) designing joint defense strategies against multi-
ple types of attacks such as denial-of-service and tamper-
ing, and iii) exploring online identification mechanisms
under resource-constrained and distributed settings to
enhance practical deployment and performance.
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Appendix A. Proof of Theorem 4.3

Since zp = ©1(sk) only takes 0 or 1, E{(z —
E{zc})?} = B{z} — (E{zx})? = E{zk} — (E{z})*. Due
to the i.i.d. property of the noise, according to Central
Limit Theorem, as N — oo,

VNi(Zn1 — 1)
4 N(0, diag(¢ —
- Cho)

), (76)

V/ Nio (ZN,ho
where Zy,; = ﬁzgzl 2kl m,=r,}; Ni is given by (9).

Likewise, by the periodicity and independence of the
flag, there is limpy o0 %J =T, SO

\/N(ﬁN,l - /)1)

5 N0, diag(i(p;—p3))), N — oc.
VN(Ln g — pp)
From Lemma 4.1, (30) and (31), we have
VN(Lyi—p1)
m :
VN(Ly g — pp)
= \/N(KN - A)
4 N (0,1 diag(zi(p; — p2))IT), N — oo (77)

By (27) and (36), combined with Mean Value Theorem,
there exist intermediate values £ between £y ; and &;,
and p; between gy ,; and ®;, such that

VN(2y - 2)
=VN(£ ( > £())
=VNZ(&) (N -

3
C = Flon,) — (C = F(P1))
=VN7(¢")
C — F(onhe) — (C = F(Pn,))
G ZN1
= VN2(¢")diag(A#(2;)) (B(A) — Bn(Aw)
Cho ZN,ho
= VN7(¢")diag(#(2)){% (A) — 6x (Rn)
(1 —Zn1
+n(Rw) 3
Cho — ZN,ho



where €y = By(An)¢ €(A) — Ev(An) = (M) -
C(AN)+C(AN)—Cn(An). Similarly, Mean Value The-

orem is applied to the derivatives of € (A) and CK(]A\N)
with respect to A. As N — oo, we have £ — &;,0;, — ©;,

N — €, and KN — A. Combining Lemmas 4.1 and
4.2, together with (76), (77), and (78), it follows that

VN(2Nn — 2) < (0,%0). The theorem is proved. O
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